Show simple item record

dc.contributor.authorCampo, Marco
dc.contributor.authorCopetti, Maria
dc.contributor.authorFernández, Jose R.
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2021-05-06T08:03:59Z
dc.date.issued2021-04-26
dc.identifier.citationCampo, M. [et al.]. On existence and numerical approximation in phase-lag thermoelasticity with two temperatures. "Discrete and continuous dynamical systems. Series B", 26 Abril 2021, p. 1-25.
dc.identifier.issn1531-3492
dc.identifier.urihttp://hdl.handle.net/2117/345198
dc.description.abstractIn this work we study from both variational and numerical points of view a thermoelastic problem which appears in the dual-phase-lag theory with two temperatures. An existence and uniqueness result is proved in the general case of different Taylor approximations for the heat flux and the inductive temperature. Then, in order to provide the numerical analysis, we restrict ourselves to the case of second-order approximations of the heat flux and first-order approximations for the inductive temperature. First, variational formulation of the corresponding problem is derived and an energy decay property is proved. Then, a fully discrete scheme is introduced by using the finite element method for the approximation of the spatial variable and the implicit Euler scheme for the discretization of the time derivatives. A discrete stability
dc.format.extent25 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshThermoelasticity
dc.subject.lcshFinite element method
dc.subject.otherPhase-lag thermoelasticity
dc.subject.otherExistence and uniqueness
dc.subject.otherFinite elements
dc.subject.otherA priori estimates
dc.subject.otherNumerical simulations
dc.titleOn existence and numerical approximation in phase-lag thermoelasticity with two temperatures
dc.typeArticle
dc.subject.lemacTermoelasticitat
dc.subject.lemacElements finits, Mètode dels
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.3934/dcdsb.2021130
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::35 Partial differential equations::35Q Equations of mathematical physics and other areas of application
dc.subject.amsClassificació AMS::80 Classical thermodynamics, heat transfer::80A Thermodynamics and heat transfer
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74H Dynamical problems
dc.subject.amsClassificació AMS::65 Numerical analysis::65M Partial differential equations, initial value and time-dependent initial-boundary value problems
dc.relation.publisherversionhttps://www.aimsciences.org/article/doi/10.3934/dcdsb.2021130
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac31235352
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2016-74934-P
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/1PE/PID2019-105118GB-I00
dc.date.lift2022-04-26
local.citation.authorCampo, M.; Copetti, M.; Fernández, J.; Quintanilla, R.
local.citation.publicationNameDiscrete and continuous dynamical systems. Series B
local.citation.startingPage1
local.citation.endingPage25


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder