Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.690 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A general mechanism of instability in Hamiltonian systems: skipping along a normally hyperbolic invariant manifold

Thumbnail
View/Open
GideaLLSDCDS2020legal.pdf (435,2Kb)
GideaLLSDCDS2020legal.pdf (435,2Kb)
 
10.3934/dcds.2020166
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/345184

Show full item record
Gidea, Marian
Llave Canosa, Rafael de la
Martínez-Seara Alonso, M. TeresaMés informacióMés informacióMés informació
Document typeArticle
Defense date2020
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We describe a recent method to show instability in Hamiltonian systems. The main hypothesis of the method is that some explicit transversality conditions – which can be verified in concrete systems by finite calculations – are satisfied. In particular, for several types of perturbations of integrable Hamiltonian systems, the hypothesis can be verified by just checking that some Melnikov-type integrals have non-degenerate zeros. This holds for Baire generic sets of perturbations in the Cr -topology, for r¿[3,8)¿{¿}. Our method does not require that the unperturbed Hamiltonian system is convex, or that the perturbation is polynomial, which are non-generic properties. Provided that the transversality conditions are verified, one concludes the existence of orbits which change the action coordinate by a quantity independent of the size of the perturbation. In fact, one can obtain orbits that follow any path in action space, up to an error decreasing with the size of the perturbation.
CitationGidea, M.; De la Llave, R.; Martinez-seara, M. A general mechanism of instability in Hamiltonian systems: skipping along a normally hyperbolic invariant manifold. "Discrete & Continuous Dynamical Systems - A", 2020, vol. 40, núm. 12, p. 6795-6813. 
URIhttp://hdl.handle.net/2117/345184
DOI10.3934/dcds.2020166
ISSN1553-5231
Publisher versionhttps://www.aimsciences.org/article/doi/10.3934/dcds.2020166
Other identifiershttps://web.mat.upc.edu/tere.m-seara/articles/GideaLLSDCDS2020legal.pdf
Collections
  • Departament de Matemàtiques - Articles de revista [3.101]
  • SD - Sistemes Dinàmics de la UPC - Articles de revista [137]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
GideaLLSDCDS2020legal.pdf435,2KbPDFView/Open
FilesDescriptionSizeFormatView
GideaLLSDCDS2020legal.pdf435,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina