Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometric quantization of almost toric manifolds

Thumbnail
View/Open
PMS2019.pdf (440,5Kb)
Share:
 
 
10.4310/JSG.2020.v18.n4.a7
 
  View Usage Statistics
Cita com:
hdl:2117/345182

Show full item record
Miranda Galcerán, EvaMés informacióMés informacióMés informació
Presas, Francisco
Barbieri Solha, Romero
Document typeArticle
Defense date2020
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectGEOMETRIA Y TOPOLOGIA DE VARIEDADES, ALGEBRA Y APLICACIONES (MINECO-MTM2015-69135-P)
TOPOLOGIA ENGEL (MINECO-MTM2015-72876-EXP)
Abstract
Kostant gave a model for the geometric quantization via the cohomology associated to the sheaf of flat sections of a pre-quantum line bundle. This model is well-adapted for real polarizations given by integrable systems and toric manifolds. In the latter case, the cohomology can be computed by counting integral points inside the associated Delzant polytope. In this article we extend Kostant’s geometric quantization to semitoric integrable systems and almost toric manifolds. In these cases the dimension of the acting torus is smaller than half of the dimension of the manifold. In particular, we compute the cohomology groups associated to the geometric quantization if the real polarization is the one induced by an integrable system with focus-focus type singularities in dimension four. As an application we determine a model for the geometric quantization of K3 surfaces under this scheme
CitationMiranda, E.; Presas, F.; Barbieri Solha, R. Geometric quantization of almost toric manifolds. "Journal of symplectic geometry", 2020, vol. 18, núm. 4, p. 1147-1168. 
URIhttp://hdl.handle.net/2117/345182
DOI10.4310/JSG.2020.v18.n4.a7
ISSN1527-5256
Publisher versionhttps://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0018/0004/a007/index.php
Other identifiershttps://arxiv.org/abs/1705.06572
Collections
  • GEOMVAP - Geometria de Varietats i Aplicacions - Articles de revista [152]
  • Departament de Matemàtiques - Articles de revista [2.895]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
PMS2019.pdf440,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina