Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.330 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Ciències de la Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intrinsic-extrinsic convolution and pooling for learning on 3D protein structures

Thumbnail
View/Open
intrinsic_extrinsic_convolution_and_pooling_for_learning_on_3d_protein_structures.pdf (950,9Kb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/345006

Show full item record
Hermosilla Casajús, Pedro
Schäfer, Marco
Lang, Matej
Fackelmann, Gloria
Vázquez Alcocer, Pere PauMés informacióMés informacióMés informació
Kozliková, Barbora
Krone, Michael
Ritschel, Tobias
Ropinski, Timo
Document typeConference lecture
Defense date2021
PublisherOpenReview.net
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectVISUALIZACION, MODELADO, SIMULACION E INTERACCION CON MODELOS 3D. APLICACIONES EN CIENCIAS DE LA VIDA Y ENTORNOS RURALES Y URBANOS (AEI-TIN2017-88515-C2-1-R)
Abstract
Proteins perform a large variety of functions in living organisms and thus play a key role in biology. However, commonly used algorithms in protein learning were not specifically designed for protein data, and are therefore not able to capture all relevant structural levels of a protein during learning. To fill this gap, we propose two new learning operators, specifically designed to process protein structures. First, we introduce a novel convolution operator that considers the primary, secondary, and tertiary structure of a protein by using n-D convolutions defined on both the Euclidean distance, as well as multiple geodesic distances between the atoms in a multi-graph. Second, we introduce a set of hierarchical pooling operators that enable multi-scale protein analysis. We further evaluate the accuracy of our algorithms on common downstream tasks, where we outperform state-of-the-art protein learning algorithms.
CitationHermosilla, P. [et al.]. Intrinsic-extrinsic convolution and pooling for learning on 3D protein structures. A: International Conference on Learning Representations. "International Conference on Learning Representations, ICLR 2021: Vienna, Austria, May 04 2021". OpenReview.net, 2021, p. 1-16. 
URIhttp://hdl.handle.net/2117/345006
Publisher versionhttps://openreview.net/forum?id=l0mSUROpwY
Collections
  • Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.331]
  • ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica - Ponències/Comunicacions de congressos [85]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
intrinsic_extri ... _3d_protein_structures.pdf950,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina