Show simple item record

dc.contributor.authorAmani, Meisam
dc.contributor.authorBrisco, Brian
dc.contributor.authorAfshar, Majid
dc.contributor.authorMirmazloumi, Seyed Mohammad
dc.contributor.authorMahdavi, Sahel
dc.contributor.authorMirzadeh, Sayyed Mohammad Javad
dc.contributor.authorHuang, Weimin
dc.contributor.authorGranger, Jean
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Ciència i Tecnologia Aeroespacials
dc.date.accessioned2021-05-03T08:34:20Z
dc.date.available2021-05-03T08:34:20Z
dc.date.issued2019-10-02
dc.identifier.citationAmani, M. [et al.]. A generalized supervised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big geo data processing. "Big Earth Data", 2 Octubre 2019, vol. 3, núm. 4, p. 378-394.
dc.identifier.issn2096-4471
dc.identifier.urihttp://hdl.handle.net/2117/344952
dc.description.abstractWetlands are important natural resources due to their numerous ecological services. Consequently, identifying their locations and extents is imperative. The stability, repeatability, cost-effectiveness, multi-scale coverage, and proper spatial resolution imagery of satellites provide a valuable opportunity for their use in various large-scale applications, such as provincial wetland mapping. To do so, it is required to (1) process and classify big geo data (i.e. a large amount of satellite datasets) in a time- and computationally-efficient approach and (2) collect a large amount of field samples. In this study, Google Earth Engine (GEE) and machine learning algorithms were utilized to process thousands of remote sensing images and produce provincial wetland inventory maps of the three Canadian provinces of Manitoba, Quebec, and Newfoundland and Labrador (NL). Additionally, using GEE, a generalized supervised classification method is proposed to produce a regional wetland map from a large area (e.g., a province) when lacking field samples. In fact, using the field data from only Manitoba and assuming that all wetlands in Canada have similar characteristics, the wetland maps were generated for the other two provinces. The overall classification accuracies for Manitoba, Quebec, and NL were 84%, 78%, and 82%, respectively, indicating the high potential of the proposed method for aiding provincial wetland inventory systems.
dc.format.extent17 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors::Trànsit de dades
dc.subject.lcshGoogle Earth
dc.subject.lcshWetlands
dc.subject.otherWetlands
dc.subject.otherRemote sensing
dc.subject.otherGoogle Earth Engine
dc.subject.otherBig geo data
dc.subject.otherImage classification
dc.titleA generalized supervised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big geo data processing
dc.typeArticle
dc.subject.lemacZones humides
dc.identifier.doi10.1080/20964471.2019.1690404
dc.relation.publisherversionhttps://www.tandfonline.com/doi/full/10.1080/20964471.2019.1690404
dc.rights.accessOpen Access
local.identifier.drac30839152
dc.description.versionPostprint (published version)
local.citation.authorAmani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.; Mahdavi, S.; Mirzadeh, S.; Huang, W.; Granger, J.
local.citation.publicationNameBig Earth Data
local.citation.volume3
local.citation.number4
local.citation.startingPage378
local.citation.endingPage394


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record