Show simple item record

dc.contributor.authorBaena, Daniel
dc.contributor.authorCastro Pérez, Jordi
dc.contributor.authorFrangioni, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2021-04-28T12:59:16Z
dc.date.available2021-04-28T12:59:16Z
dc.date.issued2020-07
dc.identifier.citationBaena, D.; Castro, J.; Frangioni, A. Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy. "Management science", Juliol 2020, vol. 66, núm. 7, p. 3051-3068.
dc.identifier.issn0025-1909
dc.identifier.otherhttp://www-eio.upc.edu/~jcastro/publications/reports/dr2017-03.pdf
dc.identifier.urihttp://hdl.handle.net/2117/344717
dc.description.abstractThe Cell Suppression Problem (CSP) is a very large Mixed-IntegerLinear Problem arising in statistical disclosure control. However, CSPhas the typical structure that allows application of the Benders de-composition, which is known to suffer from oscillation and slow con-vergence, compounded with the fact that the master problem is com-binatorial. To overcome this drawback we present a stabilized Bendersdecomposition whose master is restricted to a neighborhood of success-ful candidates by local branching constraints, which are dynamicallyadjusted, and even dropped, during the iterations. Our experimentswith synthetic and real-world instances with up to 24000 binary vari-ables, 181M continuous variables and 367M constraints show that ourapproach is competitive with both the current state-of-the-art code forCSP, and the Benders implementation in CPLEX 12.7. In some in-stances, stabilized Benders provided a very good solution in less thanone minute, while the other approaches found no feasible solution inone hour.
dc.description.sponsorshipThis work has been supported by MINECO–FEDER grant MTM2015-65362-R.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.otherBenders’ decomposition
dc.subject.otherMixed-integer linear problems
dc.subject.otherStabilization
dc.subject.otherLocal branching
dc.subject.otherLarge-scale optimization
dc.subject.otherStatistical tabulardata protection
dc.subject.otherCell suppression problem
dc.titleStabilized Benders methods for large-scale combinatorial optimization, with application to data privacy
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. GNOM - Grup d'Optimització Numèrica i Modelització
dc.identifier.doi10.1287/mnsc.2019.3341
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::90 Operations research, mathematical programming::90C Mathematical programming
dc.relation.publisherversionhttps://pubsonline.informs.org/doi/10.1287/mnsc.2019.3341
dc.rights.accessOpen Access
local.identifier.drac29519170
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//MTM2015-65362-R/ES/OPTIMIZACION DE MUY GRAN ESCALA: METODOS Y APLICACIONES/
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097580-B-I00/ES/MODELIZACION Y OPTIMIZACION DE PROBLEMAS ESTRUCTURADOS DE GRAN ESCALA Y APLICACIONES/
local.citation.authorBaena, D; Castro, J.; Frangioni, A.
local.citation.publicationNameManagement science
local.citation.volume66
local.citation.number7
local.citation.startingPage3051
local.citation.endingPage3068


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record