dc.contributor.author | Baena, Daniel |
dc.contributor.author | Castro Pérez, Jordi |
dc.contributor.author | Frangioni, Antonio |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa |
dc.date.accessioned | 2021-04-28T12:59:16Z |
dc.date.available | 2021-04-28T12:59:16Z |
dc.date.issued | 2020-07 |
dc.identifier.citation | Baena, D.; Castro, J.; Frangioni, A. Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy. "Management science", Juliol 2020, vol. 66, núm. 7, p. 3051-3068. |
dc.identifier.issn | 0025-1909 |
dc.identifier.other | http://www-eio.upc.edu/~jcastro/publications/reports/dr2017-03.pdf |
dc.identifier.uri | http://hdl.handle.net/2117/344717 |
dc.description.abstract | The Cell Suppression Problem (CSP) is a very large Mixed-IntegerLinear Problem arising in statistical disclosure control. However, CSPhas the typical structure that allows application of the Benders de-composition, which is known to suffer from oscillation and slow con-vergence, compounded with the fact that the master problem is com-binatorial. To overcome this drawback we present a stabilized Bendersdecomposition whose master is restricted to a neighborhood of success-ful candidates by local branching constraints, which are dynamicallyadjusted, and even dropped, during the iterations. Our experimentswith synthetic and real-world instances with up to 24000 binary vari-ables, 181M continuous variables and 367M constraints show that ourapproach is competitive with both the current state-of-the-art code forCSP, and the Benders implementation in CPLEX 12.7. In some in-stances, stabilized Benders provided a very good solution in less thanone minute, while the other approaches found no feasible solution inone hour. |
dc.description.sponsorship | This work has been supported by MINECO–FEDER grant MTM2015-65362-R. |
dc.format.extent | 18 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística |
dc.subject.other | Benders’ decomposition |
dc.subject.other | Mixed-integer linear problems |
dc.subject.other | Stabilization |
dc.subject.other | Local branching |
dc.subject.other | Large-scale optimization |
dc.subject.other | Statistical tabulardata protection |
dc.subject.other | Cell suppression problem |
dc.title | Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy |
dc.type | Article |
dc.contributor.group | Universitat Politècnica de Catalunya. GNOM - Grup d'Optimització Numèrica i Modelització |
dc.identifier.doi | 10.1287/mnsc.2019.3341 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming |
dc.relation.publisherversion | https://pubsonline.informs.org/doi/10.1287/mnsc.2019.3341 |
dc.rights.access | Open Access |
local.identifier.drac | 29519170 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO//MTM2015-65362-R/ES/OPTIMIZACION DE MUY GRAN ESCALA: METODOS Y APLICACIONES/ |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097580-B-I00/ES/MODELIZACION Y OPTIMIZACION DE PROBLEMAS ESTRUCTURADOS DE GRAN ESCALA Y APLICACIONES/ |
local.citation.author | Baena, D; Castro, J.; Frangioni, A. |
local.citation.publicationName | Management science |
local.citation.volume | 66 |
local.citation.number | 7 |
local.citation.startingPage | 3051 |
local.citation.endingPage | 3068 |