Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GNOM - Grup d'Optimització Numèrica i Modelització
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GNOM - Grup d'Optimització Numèrica i Modelització
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy

Thumbnail
View/Open
dr2017-03.pdf (656,0Kb)
 
10.1287/mnsc.2019.3341
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/344717

Show full item record
Baena, Daniel
Castro Pérez, JordiMés informacióMés informacióMés informació
Frangioni, Antonio
Document typeArticle
Defense date2020-07
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectOPTIMIZACION DE MUY GRAN ESCALA: METODOS Y APLICACIONES (MINECO-MTM2015-65362-R)
MODELIZACION Y OPTIMIZACION DE PROBLEMAS ESTRUCTURADOS DE GRAN ESCALA Y APLICACIONES (AEI-RTI2018-097580-B-I00)
Abstract
The Cell Suppression Problem (CSP) is a very large Mixed-IntegerLinear Problem arising in statistical disclosure control. However, CSPhas the typical structure that allows application of the Benders de-composition, which is known to suffer from oscillation and slow con-vergence, compounded with the fact that the master problem is com-binatorial. To overcome this drawback we present a stabilized Bendersdecomposition whose master is restricted to a neighborhood of success-ful candidates by local branching constraints, which are dynamicallyadjusted, and even dropped, during the iterations. Our experimentswith synthetic and real-world instances with up to 24000 binary vari-ables, 181M continuous variables and 367M constraints show that ourapproach is competitive with both the current state-of-the-art code forCSP, and the Benders implementation in CPLEX 12.7. In some in-stances, stabilized Benders provided a very good solution in less thanone minute, while the other approaches found no feasible solution inone hour.
CitationBaena, D.; Castro, J.; Frangioni, A. Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy. "Management science", Juliol 2020, vol. 66, núm. 7, p. 3051-3068. 
URIhttp://hdl.handle.net/2117/344717
DOI10.1287/mnsc.2019.3341
ISSN0025-1909
Publisher versionhttps://pubsonline.informs.org/doi/10.1287/mnsc.2019.3341
Other identifiershttp://www-eio.upc.edu/~jcastro/publications/reports/dr2017-03.pdf
Collections
  • GNOM - Grup d'Optimització Numèrica i Modelització - Articles de revista [103]
  • Departament d'Estadística i Investigació Operativa - Articles de revista [683]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
dr2017-03.pdf656,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina