Show simple item record

dc.contributor.authorTamayo Mas, Elena
dc.contributor.authorHarrington, J. F.
dc.contributor.authorBrüning, T.
dc.contributor.authorShao, H.
dc.contributor.authorDagher, E. E.
dc.contributor.authorLee, Jaewon
dc.contributor.authorKim, K.
dc.contributor.authorRutqvist, Jonny
dc.contributor.authorKolditz, Olaf
dc.contributor.authorLai, S. H.
dc.contributor.authorChittenden, C.
dc.contributor.authorWang, Y.
dc.contributor.authorPuig Damians, Ivan
dc.contributor.authorOlivella Pastallé, Sebastià
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2021-04-28T12:33:01Z
dc.date.available2021-04-28T12:33:01Z
dc.date.issued2021-03
dc.identifier.citationTamayo, E. [et al.]. Modelling advective gas flow in compact bentonite: lessons learnt from different numerical approaches. "International journal of rock mechanics and mining sciences", Març 2021, vol. 139, p. 104580:1-104580:41.
dc.identifier.issn1365-1609
dc.identifier.urihttp://hdl.handle.net/2117/344705
dc.description.abstractIn a repository for radioactive waste hosted in a clay formation, hydrogen and other gases may be generated due to the corrosion of metallic materials under anoxic conditions, the radioactive decay of waste and the radiolysis of water. If the gas production rate exceeds the gas diffusion rate within the pores of the clay, a discrete gas phase will form and accumulate until its pressure becomes large enough to exceed the entry pressure of the surrounding material, at which point dilatant, advective flow of gas is expected to occur. The purpose of Task An under DECOVALEX-2019 is to better represent the processes governing the advective movement of gas in both low-permeability argillaceous repository host rocks and clay-based engineered barriers within numerical codes. In this paper special attention is given to the mechanisms controlling gas entry, flow and pathway sealing and their impact on the performance of the engineered clay barrier. Previous work suggests gas flow is accompanied by the creation of dilatant pathways whose properties change temporally and spatially within the medium. Thus, four new types of approaches have been developed: (i) standard two-phase flow models (continuous techniques) incorporating a range of different mechanical deformation behaviours, (ii) enhanced two-phase flow models in which fractures are embedded within a plastic material (continuous techniques) or incorporated into the model using a rigid-body-spring network (discrete approaches), (iii) a singlephase model incorporating a creep damage function in which only gas flow is considered, and (iv) a conceptual approach used to examine the chaotic nature of gas flow. The outputs from these different approaches are compared. This is an essential step as the choice of modelling approach strongly impacts the representation and prediction of gas flow in a future repository. In addition, experience gained through this task is of direct relevance to other clay-based engineering issues where immiscible gas flow is a consideration including hydrocarbon migration, carbon capture and storage, shale gas and landfill design. This paper summarises the outcomes of work in Task A conducted between May 2016 and May 2019 and provides a brief overview of the experimental data and a synthesis of the work of the participating modelling teams.
dc.description.sponsorshipDECOVALEX is an international research project comprising participants from industry, government and academia, focusing on development of understanding, models and codes in complex coupled problems in sub-surface geological and engineering applications; DECOVALEX-2019 is the current phase of the project. The authors appreciate and thank the DECOVALEX-2019 funding organisations Andra, BGR/UFZ, CNSC, US DOE, ENSI, JAEA, IRSN, KAERI, NWMO, RWM, SÚRAO, SSM and Taipower for their financial and technical support of the work described in this paper. The statements made in the paper are, however, solely those of the authors and do not necessarily reflect those of the funding organisations.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights© 2019. Elsevier
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Energies::Energia nuclear
dc.subjectÀrees temàtiques de la UPC::Desenvolupament humà i sostenible::Enginyeria ambiental::Tractament dels residus
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Geotècnia::Mecànica de sòls
dc.subject.lcshRadioactive waste disposal in the ground
dc.subject.lcshBentonite deposits
dc.subject.otherGas flow
dc.subject.otherDilation
dc.subject.otherTwo-phase models
dc.subject.otherMechanical deformation
dc.subject.otherContinuous approaches
dc.subject.otherFractures
dc.titleModelling advective gas flow in compact bentonite: lessons learnt from different numerical approaches
dc.typeArticle
dc.subject.lemacAbocadors de residus radioactius
dc.subject.lemacBentonita -- Propietats
dc.contributor.groupUniversitat Politècnica de Catalunya. MSR - Mecànica del Sòls i de les Roques
dc.identifier.doi10.1016/j.ijrmms.2020.104580
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1365160920309461
dc.rights.accessOpen Access
local.identifier.drac31235807
dc.description.versionPostprint (published version)
dc.relation.projectiddecovalex
local.citation.authorTamayo, E.; Harrington, J.; Brüning, T.; Shao, H.; Dagher, E.; Lee, J.; Kim, K.; Rutqvist, J.; Kolditz, O.; Lai, S.; Chittenden, C.; Wang, Y.; Damians, I.P.; Olivella, S.
local.citation.publicationNameInternational journal of rock mechanics and mining sciences
local.citation.volume139
local.citation.startingPage104580:1
local.citation.endingPage104580:41


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Generic