Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
75.939 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Telecommunications Engineering (MET)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Telecommunications Engineering (MET)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of Restricted Boltzmann Machines with pattern-dependant weights

Thumbnail
View/Open
TFM.pdf (887,2Kb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/344139

Show full item record
González Fernández, Alejandro
Tutor / directorMazzanti Castrillejo, Fernando PabloMés informacióMés informacióMés informació; Romero Merino, EnriqueMés informacióMés informacióMés informació
Document typeMaster thesis
Date2021-01-24
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
This project will consist on the theoretical and experimental analysis of Restricted Boltzmann Machines where the matrix of weights is defined as a function of a set of adjustable patterns, derivation of the learning equations, implementation of the model and experiments in both artificial and real cases. Due to its probabilistic nature and its nice mathematical formulation, RBM differs from many other machine learning algorithms. In particular, once the model is trained, you can obtain additional information not given by the other algorithms, such as the probabilities of new instances. The objective is to explode the real potential as probabilistic model of a RBM. We will investigate a new algorithm called RAPID. It has been implemented and it has been analysed to detect its deficiencies. The algorithm presents some issues which we will try to solve implementing some modifications. Then, we will compare the results with common algorithms as CD. The experiments demonstrate that this new algorithm could be an interesting procedure to reduce the computational cost of training some models.
SubjectsAlgorithms, Statistics, Algorismes, Estadística
DegreeMÀSTER UNIVERSITARI EN ENGINYERIA DE TELECOMUNICACIÓ (Pla 2013)
URIhttp://hdl.handle.net/2117/344139
Collections
  • Màsters oficials - Master's degree in Telecommunications Engineering (MET) [441]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TFM.pdf887,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina