dc.contributor.author | Chapuy, G. |
dc.contributor.author | Perarnau Llobet, Guillem |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2021-04-16T12:46:09Z |
dc.date.available | 2021-04-17T00:32:32Z |
dc.date.issued | 2020-03-11 |
dc.identifier.citation | Chapuy, G.; Perarnau-Llobet, G. On the number of coloured triangulations of d-manifolds. "Discrete and computational geometry", 11 Març 2020, vol. 65, p. 601-617. |
dc.identifier.issn | 0179-5376 |
dc.identifier.uri | http://hdl.handle.net/2117/343834 |
dc.description | This is a post-peer-review, pre-copyedit version of an article published in Discrete and computational geometry. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00454-020-00189-w |
dc.description.abstract | We give superexponential lower and upper bounds on the number of coloured d-dimensional triangulations whose underlying space is an oriented manifold, when the number of simplices goes to infinity and d=3 is fixed. In the special case of dimension 3, the lower and upper bounds match up to exponential factors, and we show that there are 2O(n)nn6 coloured triangulations of 3-manifolds with n tetrahedra. Our results also imply that random coloured triangulations of 3-manifolds have a sublinear number of vertices. The upper bounds apply in particular to coloured d-spheres for which they seem to be the best known bounds in any dimension d=3, even though it is often conjectured that exponential bounds hold in this case. We also ask a related question on regular edge-coloured graphs having the property that each 3-coloured component is planar, which is of independent interest. |
dc.description.sponsorship | This project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. ERC-2016-STG 716083 “CombiTop”). G. Perarnau acknowledges an invitation in Paris funded by the ERC Grant CombiTop, during which this project was advanced. |
dc.format.extent | 17 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria |
dc.subject.lcsh | Combinatorial analysis |
dc.subject.other | Triangulated manifolds |
dc.subject.other | Random complexes |
dc.subject.other | Enumeration |
dc.title | On the number of coloured triangulations of d-manifolds |
dc.type | Article |
dc.subject.lemac | Anàlisi combinatòria |
dc.contributor.group | Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics |
dc.identifier.doi | 10.1007/s00454-020-00189-w |
dc.rights.access | Open Access |
local.identifier.drac | 28582846 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Chapuy, G.; Perarnau-Llobet, G. |
local.citation.publicationName | Discrete and computational geometry |
local.citation.volume | 65 |
local.citation.startingPage | 601 |
local.citation.endingPage | 617 |