Show simple item record

dc.contributor.authorChapuy, G.
dc.contributor.authorPerarnau Llobet, Guillem
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2021-04-16T12:46:09Z
dc.date.available2021-04-17T00:32:32Z
dc.date.issued2020-03-11
dc.identifier.citationChapuy, G.; Perarnau-Llobet, G. On the number of coloured triangulations of d-manifolds. "Discrete and computational geometry", 11 Març 2020, vol. 65, p. 601-617.
dc.identifier.issn0179-5376
dc.identifier.urihttp://hdl.handle.net/2117/343834
dc.descriptionThis is a post-peer-review, pre-copyedit version of an article published in Discrete and computational geometry. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00454-020-00189-w
dc.description.abstractWe give superexponential lower and upper bounds on the number of coloured d-dimensional triangulations whose underlying space is an oriented manifold, when the number of simplices goes to infinity and d=3 is fixed. In the special case of dimension 3, the lower and upper bounds match up to exponential factors, and we show that there are 2O(n)nn6 coloured triangulations of 3-manifolds with n tetrahedra. Our results also imply that random coloured triangulations of 3-manifolds have a sublinear number of vertices. The upper bounds apply in particular to coloured d-spheres for which they seem to be the best known bounds in any dimension d=3, even though it is often conjectured that exponential bounds hold in this case. We also ask a related question on regular edge-coloured graphs having the property that each 3-coloured component is planar, which is of independent interest.
dc.description.sponsorshipThis project has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. ERC-2016-STG 716083 “CombiTop”). G. Perarnau acknowledges an invitation in Paris funded by the ERC Grant CombiTop, during which this project was advanced.
dc.format.extent17 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria
dc.subject.lcshCombinatorial analysis
dc.subject.otherTriangulated manifolds
dc.subject.otherRandom complexes
dc.subject.otherEnumeration
dc.titleOn the number of coloured triangulations of d-manifolds
dc.typeArticle
dc.subject.lemacAnàlisi combinatòria
dc.contributor.groupUniversitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
dc.identifier.doi10.1007/s00454-020-00189-w
dc.rights.accessOpen Access
local.identifier.drac28582846
dc.description.versionPostprint (author's final draft)
local.citation.authorChapuy, G.; Perarnau-Llobet, G.
local.citation.publicationNameDiscrete and computational geometry
local.citation.volume65
local.citation.startingPage601
local.citation.endingPage617


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record