On the number of coloured triangulations of d-manifolds

Visualitza/Obre
Cita com:
hdl:2117/343834
Tipus de documentArticle
Data publicació2020-03-11
Condicions d'accésAccés obert
Tots els drets reservats. Aquesta obra està protegida pels drets de propietat intel·lectual i
industrial corresponents. Sense perjudici de les exempcions legals existents, queda prohibida la seva
reproducció, distribució, comunicació pública o transformació sense l'autorització del titular dels drets
Abstract
We give superexponential lower and upper bounds on the number of coloured d-dimensional triangulations whose underlying space is an oriented manifold, when the number of simplices goes to infinity and d=3 is fixed. In the special case of dimension 3, the lower and upper bounds match up to exponential factors, and we show that there are 2O(n)nn6 coloured triangulations of 3-manifolds with n tetrahedra. Our results also imply that random coloured triangulations of 3-manifolds have a sublinear number of vertices. The upper bounds apply in particular to coloured d-spheres for which they seem to be the best known bounds in any dimension d=3, even though it is often conjectured that exponential bounds hold in this case. We also ask a related question on regular edge-coloured graphs having the property that each 3-coloured component is planar, which is of independent interest.
Descripció
This is a post-peer-review, pre-copyedit version of an article published in Discrete and computational geometry. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00454-020-00189-w
CitacióChapuy, G.; Perarnau-Llobet, G. On the number of coloured triangulations of d-manifolds. "Discrete and computational geometry", 11 Març 2020, vol. 65, p. 601-617.
ISSN0179-5376
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
3D_spheres.pdf | 534,6Kb | Visualitza/Obre |