Show simple item record

dc.contributor.authorVázquez Giménez, Juan José
dc.contributor.authorArjona Martínez, Jamie
dc.contributor.authorLinares Herreros, María Paz
dc.contributor.authorCasanovas Garcia, Josep
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Estadística i Investigació Operativa
dc.contributor.otherFacultat d'Informàtica de Barcelona
dc.date.accessioned2021-04-15T10:10:16Z
dc.date.available2021-04-15T10:10:16Z
dc.date.issued2020
dc.identifier.citationVazquez, J. [et al.]. A comparison of deep learning methods for urban traffic forecasting using floating car data. "Transportation research procedia", 2020, vol. 47, p. 195-202.
dc.identifier.issn2352-1457
dc.identifier.urihttp://hdl.handle.net/2117/343785
dc.description.abstractCities today must address the challenge of sustainable mobility, and traffic state forecasting plays a key role in mitigating traffic congestion in urban areas. For example, predicting path travel time is a crucial issue in navigation and route planning applications. Furthermore, the pervasive penetration of information and communication technologies makes floating car data an important source of real-time data for intelligent transportation system applications. This paper deals with the problem of forecasting urban traffic when floating car data is available. A comparison of four deep learning methods is presented to demonstrate the capabilities of the neural network approaches (recurrent and/or convolutional) in solving the traffic forecasting problem in an urban context. Different tests are proposed in order to not only evaluate the developed deep learning models, but also to analyze how the penetration rates of floating cars affect forecasting accuracy. The presented experiments were designed according to a microscopic traffic simulation approach in order to emulate floating car data fleets, which provide vehicle position and speed, and to validate the obtained results. Finally, some conclusions and further research are presented.
dc.format.extent8 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Infraestructures i modelització dels transports
dc.subject.lcshDeep learning
dc.subject.lcshCity traffic
dc.subject.lcshUrban transportation
dc.subject.otherurban traffic forecast
dc.subject.otherdeep learning
dc.subject.otherfloating car data
dc.titleA comparison of deep learning methods for urban traffic forecasting using floating car data
dc.typeArticle
dc.subject.lemacAprenentatge profund
dc.subject.lemacCirculació urbana
dc.subject.lemacTransport urbà
dc.contributor.groupUniversitat Politècnica de Catalunya. IMP - Information Modeling and Processing
dc.identifier.doi10.1016/j.trpro.2020.03.079
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2352146520302660
dc.rights.accessOpen Access
local.identifier.drac27825043
dc.description.versionPostprint (published version)
local.citation.authorVazquez, J.; Arjona, J.; Linares, M. P.; Casanovas, J.
local.citation.publicationNameTransportation research procedia
local.citation.volume47
local.citation.startingPage195
local.citation.endingPage202


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record