dc.contributor.author | Vázquez Giménez, Juan José |
dc.contributor.author | Arjona Martínez, Jamie |
dc.contributor.author | Linares Herreros, María Paz |
dc.contributor.author | Casanovas Garcia, Josep |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Estadística i Investigació Operativa |
dc.contributor.other | Facultat d'Informàtica de Barcelona |
dc.date.accessioned | 2021-04-15T10:10:16Z |
dc.date.available | 2021-04-15T10:10:16Z |
dc.date.issued | 2020 |
dc.identifier.citation | Vazquez, J. [et al.]. A comparison of deep learning methods for urban traffic forecasting using floating car data. "Transportation research procedia", 2020, vol. 47, p. 195-202. |
dc.identifier.issn | 2352-1457 |
dc.identifier.uri | http://hdl.handle.net/2117/343785 |
dc.description.abstract | Cities today must address the challenge of sustainable mobility, and traffic state forecasting plays a key role in mitigating traffic congestion in urban areas. For example, predicting path travel time is a crucial issue in navigation and route planning applications. Furthermore, the pervasive penetration of information and communication technologies makes floating car data an important source of real-time data for intelligent transportation system applications. This paper deals with the problem of forecasting urban traffic when floating car data is available. A comparison of four deep learning methods is presented to demonstrate the capabilities of the neural network approaches (recurrent and/or convolutional) in solving the traffic forecasting problem in an urban context. Different tests are proposed in order to not only evaluate the developed deep learning models, but also to analyze how the penetration rates of floating cars affect forecasting accuracy. The presented experiments were designed according to a microscopic traffic simulation approach in order to emulate floating car data fleets, which provide vehicle position and speed, and to validate the obtained results. Finally, some conclusions and further research are presented. |
dc.format.extent | 8 p. |
dc.language.iso | eng |
dc.publisher | Elsevier |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria civil::Infraestructures i modelització dels transports |
dc.subject.lcsh | Deep learning |
dc.subject.lcsh | City traffic |
dc.subject.lcsh | Urban transportation |
dc.subject.other | urban traffic forecast |
dc.subject.other | deep learning |
dc.subject.other | floating car data |
dc.title | A comparison of deep learning methods for urban traffic forecasting using floating car data |
dc.type | Article |
dc.subject.lemac | Aprenentatge profund |
dc.subject.lemac | Circulació urbana |
dc.subject.lemac | Transport urbà |
dc.contributor.group | Universitat Politècnica de Catalunya. IMP - Information Modeling and Processing |
dc.identifier.doi | 10.1016/j.trpro.2020.03.079 |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2352146520302660 |
dc.rights.access | Open Access |
local.identifier.drac | 27825043 |
dc.description.version | Postprint (published version) |
local.citation.author | Vazquez, J.; Arjona, J.; Linares, M. P.; Casanovas, J. |
local.citation.publicationName | Transportation research procedia |
local.citation.volume | 47 |
local.citation.startingPage | 195 |
local.citation.endingPage | 202 |