A step beyond Freiman’s theorem for set addition modulo a prime

Document typeArticle
Defense date2020-01-01
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Freiman’s 2.4-Theorem states that any set A¿Zp satisfying |2A|=2.4|A|-3 and |A|<p/35 can be covered by an arithmetic progression of length at most |2A|-|A|+1. A more general result of Green and Ruzsa implies that this covering property holds for any set satisfying |2A|=3|A|-4 as long as the rather strong density requirement |A|<p/10215 is satisfied. We present a version of this statement that allows for sets satisfying |2A|=2.48|A|-7 with the more modest density requirement of |A|<p/1010.
CitationCandela, P.; Serra, O.; Spiegel, C. A step beyond Freiman's theorem for set addition modulo a prime. "Journal de théorie des nombres de Bordeaux", 1 Gener 2020, vol. 32, núm. 1, p. 275-289.
ISSN1246-7405
Publisher versionhttps://jtnb.centre-mersenne.org/item/JTNB_2020__32_1_275_0/
Files | Description | Size | Format | View |
---|---|---|---|---|
ImproveDeshouillers07_revisions.pdf | 374,2Kb | View/Open |