Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.687 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SPCOM - Processament del Senyal i Comunicacions
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • SPCOM - Processament del Senyal i Comunicacions
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-rank data matrix recovery with missing values and faulty sensors

Thumbnail
View/Open
lowrankapprox.pdf (285,0Kb)
Share:
 
 
10.23919/EUSIPCO.2019.8903117
 
  View Usage Statistics
Cita com:
hdl:2117/343306

Show full item record
Lopez Valcarce, Roberto
Sala Álvarez, JoséMés informacióMés informacióMés informació
Document typeConference lecture
Defense date2019
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In practice, data gathered by wireless sensor networks often belongs in a low-dimensional subspace, but it can present missing as well as corrupted values due to sensor malfunctioning and/or malicious attacks. We study the problem of Maximum Likelihood estimation of the low-rank factors of the underlying structure in such situation, and develop an Expectation-Maximization algorithm to this purpose, together with an effective initialization scheme. The proposed method outperforms previous schemes based on an initial faulty sensor identification stage, and is competitive in terms of complexity and performance with convex optimization-based matrix completion approaches.
CitationLópez, R.; Sala, J. Low-rank data matrix recovery with missing values and faulty sensors. A: European Signal Processing Conference. "27th EUSIPCO 2019 European Signal Processing Conference: A Coruña, Spain: September 2-6, 2019". 2019, p. 1-5. ISBN 978-1-5386-7300-3. DOI 10.23919/EUSIPCO.2019.8903117. 
URIhttp://hdl.handle.net/2117/343306
DOI10.23919/EUSIPCO.2019.8903117
ISBN978-1-5386-7300-3
Publisher versionhttps://ieeexplore.ieee.org/document/8903117
Collections
  • SPCOM - Processament del Senyal i Comunicacions - Ponències/Comunicacions de congressos [342]
  • Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.229]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
lowrankapprox.pdf285,0KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina