Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.362 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Computació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Computació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards scalable data discovery

Thumbnail
View/Open
p61.pdf (533,7Kb)
 
10.5441/002/edbt.2021.47
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/343141

Show full item record
Flores Herrera, Javier de JesúsMés informacióMés informació
Nadal Francesch, SergiMés informacióMés informacióMés informació
Romero Moral, ÓscarMés informacióMés informacióMés informació
Document typeConference lecture
Defense date2021
PublisherOpenProceedings
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
We study the problem of discovering joinable datasets at scale. We approach the problem from a learning perspective relying on profiles. These are succinct representations that capture the underlying characteristics of the schemata and data values of datasets, which can be efficiently extracted in a distributed and parallel fashion. Profiles are then compared, to predict the quality of a join operation among a pair of attributes from different datasets. In contrast to the state-of-the-art, we define a novel notion of join quality that relies on a metric considering both the containment and cardinality proportion between join candidate attributes. We implement our approach in a system called NextiaJD, and present experiments to show the predictive performance and computational efficiency of our method. Our experiments show that NextiaJD obtains similar predictive performance to that of hash-based methods, yet we are able to scale-up to larger volumes of data. Also, NextiaJD generates a considerably less amount of false positives, which is a desirable feature at scale.
CitationFlores, J.; Nadal, S.; Romero, O. Towards scalable data discovery. A: International Conference on Extending Database Technology. "Advances in Database Technology: EDBT 2021, 24th International Conference on Extending Database Technology: Nicosia, Cyprus, March 23-26, 2021: proceedings". Konstanz: OpenProceedings, 2021, p. 433-438. ISBN 978-3-89318-084-4. DOI 10.5441/002/edbt.2021.47. 
URIhttp://hdl.handle.net/2117/343141
DOI10.5441/002/edbt.2021.47
ISBN978-3-89318-084-4
Publisher versionhttps://doi.org/10.5441/002/edbt.2021.47
Collections
  • Doctorat en Computació - Ponències/Comunicacions de congressos [71]
  • inSSIDE - integrated Software, Service, Information and Data Engineering - Ponències/Comunicacions de congressos [332]
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació - Ponències/Comunicacions de congressos [566]
  • Doctorat Erasmus Mundus en Tecnologies de la Informació per a la Intel·ligència Empresarial - Ponències/Comunicacions de congressos [11]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
p61.pdf533,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina