Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.738 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Fotònica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Fotònica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Shopper intent prediction from clickstream e-commerce data with minimal browsing information

Thumbnail
View/Open
Pre-print proofs (5,987Mb)
Share:
 
 
10.1038/s41598-020-73622-y
 
  View Usage Statistics
Cita com:
hdl:2117/341936

Show full item record
Requena Pozo, BorjaMés informacióMés informació
Cassani, Giovanni
Tagliabue, Jacopo
Greco, Ciro
Lacasa, Lucas
Document typeArticle
Defense date2020-10-12
PublisherNature
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectTHE DISCOVERIES CTR - Implementation of The Discoveries Centre for Regenerative and Precision Medicine, a new Centre of Excellence in Portugal (EC-H2020-739572)
LASERLAB-EUROPE - The Integrated Initiative of European Laser Research Infrastructures (EC-H2020-654148)
OPTOlogic - Optical Topologic Logic (EC-H2020-899794)
Abstract
We address the problem of user intent prediction from clickstream data of an e-commerce website via two conceptually different approaches: a hand-crafted feature-based classification and a deep learning-based classification. In both approaches, we deliberately coarse-grain a new clickstream proprietary dataset to produce symbolic trajectories with minimal information. Then, we tackle the problem of trajectory classification of arbitrary length and ultimately, early prediction of limited-length trajectories, both for balanced and unbalanced datasets. Our analysis shows that k-gram statistics with visibility graph motifs produce fast and accurate classifications, highlighting that purchase prediction is reliable even for extremely short observation windows. In the deep learning case, we benchmarked previous state-of-the-art (SOTA) models on the new dataset, and improved classification accuracy over SOTA performances with our proposed LSTM architecture. We conclude with an in-depth error analysis and a careful evaluation of the pros and cons of the two approaches when applied to realistic industry use cases.
CitationRequena, B. [et al.]. Shopper intent prediction from clickstream e-commerce data with minimal browsing information. "Scientific reports", 12 Octubre 2020, vol. 10, núm. 16983, p. 1-23. 
URIhttp://hdl.handle.net/2117/341936
DOI10.1038/s41598-020-73622-y
ISSN2045-2322
Publisher versionhttps://www.nature.com/articles/s41598-020-73622-y
Collections
  • Doctorat en Fotònica - Articles de revista [68]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
SciRep_proofs.pdfPre-print proofs5,987MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina