dc.contributor.author | Marinescu, Maria Cristina |
dc.contributor.author | Reshetnikov, Artem |
dc.contributor.author | More López, Joaquim |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.contributor.other | Barcelona Supercomputing Center |
dc.date.accessioned | 2021-03-11T14:46:29Z |
dc.date.available | 2021-03-11T14:46:29Z |
dc.date.issued | 2020 |
dc.identifier.citation | Marinescu, M.; Reshetnikov, A.; More, J. Improving object detection in paintings based on time contexts. A: IEEE International Conference On Data Mining. "20th IEEE International Conference on Data Mining Workshops: 17-20 November 2020, virtual conference: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 926-932. ISBN 978-1-7281-9012-9. DOI 10.1109/ICDMW51313.2020.00133. |
dc.identifier.isbn | 978-1-7281-9012-9 |
dc.identifier.uri | http://hdl.handle.net/2117/341517 |
dc.description.abstract | This paper proposes a novel approach to object detection for the Cultural Heritage domain, which relies on combining Deep Learning and semantic metadata about candidate objects extracted from existing sources such as Wikidata, dictionaries, or Google NGram. Working with cultural heritage presents challenges not present in every-day images. In computer vision, object detection models are usually trained with datasets whose classes are not imaginary concepts, and have neither symbolic nor time-specific dimensions. Apart from this conceptual problem, the paintings are limited in number and represent the same concept in potentially very different styles. Finally, the metadata associated with the images is often poor or inexistent, which makes it hard to properly train a model. Our approach can improve the precision of object detection by placing the classes detected by a neural network model in time, based on the dates of their first known use. By taking into account the time of inception of objects such as the TV, cell phone, or scissors, and the appearance of some objects in the geographical space that corresponds to a painting (e.g. bananas or broccoli in 15th century Europe), we can correct and refine the detected objects based on their chronologic probability. |
dc.description.sponsorship | This research has been supported by the Saint George on a Bike project 2018-EU-IA-0104, co-financed by the Connecting Europe Facility of the European Union. |
dc.format.extent | 7 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject.lcsh | Data mining |
dc.subject.lcsh | Machine learning |
dc.subject.lcsh | Computer vision |
dc.subject.other | Object detection |
dc.subject.other | Cultural heritage |
dc.subject.other | Deep learning |
dc.title | Improving object detection in paintings based on time contexts |
dc.type | Conference report |
dc.subject.lemac | Mineria de dades |
dc.subject.lemac | Aprenentatge automàtic |
dc.subject.lemac | Visió per ordinador |
dc.identifier.doi | 10.1109/ICDMW51313.2020.00133 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9346513 |
dc.rights.access | Open Access |
local.identifier.drac | 30745378 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Marinescu, M.; Reshetnikov, A.; More, J. |
local.citation.contributor | IEEE International Conference On Data Mining |
local.citation.publicationName | 20th IEEE International Conference on Data Mining Workshops: 17-20 November 2020, virtual conference: proceedings |
local.citation.startingPage | 926 |
local.citation.endingPage | 932 |