Show simple item record

dc.contributor.authorMarinescu, Maria Cristina
dc.contributor.authorReshetnikov, Artem
dc.contributor.authorMore López, Joaquim
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2021-03-11T14:46:29Z
dc.date.available2021-03-11T14:46:29Z
dc.date.issued2020
dc.identifier.citationMarinescu, M.; Reshetnikov, A.; More, J. Improving object detection in paintings based on time contexts. A: IEEE International Conference On Data Mining. "20th IEEE International Conference on Data Mining Workshops: 17-20 November 2020, virtual conference: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 926-932. ISBN 978-1-7281-9012-9. DOI 10.1109/ICDMW51313.2020.00133.
dc.identifier.isbn978-1-7281-9012-9
dc.identifier.urihttp://hdl.handle.net/2117/341517
dc.description.abstractThis paper proposes a novel approach to object detection for the Cultural Heritage domain, which relies on combining Deep Learning and semantic metadata about candidate objects extracted from existing sources such as Wikidata, dictionaries, or Google NGram. Working with cultural heritage presents challenges not present in every-day images. In computer vision, object detection models are usually trained with datasets whose classes are not imaginary concepts, and have neither symbolic nor time-specific dimensions. Apart from this conceptual problem, the paintings are limited in number and represent the same concept in potentially very different styles. Finally, the metadata associated with the images is often poor or inexistent, which makes it hard to properly train a model. Our approach can improve the precision of object detection by placing the classes detected by a neural network model in time, based on the dates of their first known use. By taking into account the time of inception of objects such as the TV, cell phone, or scissors, and the appearance of some objects in the geographical space that corresponds to a painting (e.g. bananas or broccoli in 15th century Europe), we can correct and refine the detected objects based on their chronologic probability.
dc.description.sponsorshipThis research has been supported by the Saint George on a Bike project 2018-EU-IA-0104, co-financed by the Connecting Europe Facility of the European Union.
dc.format.extent7 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subject.lcshData mining
dc.subject.lcshMachine learning
dc.subject.lcshComputer vision
dc.subject.otherObject detection
dc.subject.otherCultural heritage
dc.subject.otherDeep learning
dc.titleImproving object detection in paintings based on time contexts
dc.typeConference report
dc.subject.lemacMineria de dades
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacVisió per ordinador
dc.identifier.doi10.1109/ICDMW51313.2020.00133
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9346513
dc.rights.accessOpen Access
local.identifier.drac30745378
dc.description.versionPostprint (author's final draft)
local.citation.authorMarinescu, M.; Reshetnikov, A.; More, J.
local.citation.contributorIEEE International Conference On Data Mining
local.citation.publicationName20th IEEE International Conference on Data Mining Workshops: 17-20 November 2020, virtual conference: proceedings
local.citation.startingPage926
local.citation.endingPage932


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record