Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations
View/Open
Cita com:
hdl:2117/340814
Document typeArticle
Defense date2021-03
PublisherSpringer Nature
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectCONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
TEORIA Y APLICACIONES DE CONFIGURACIONES DE PUNTOS Y REDES (AEI-PID2019-104129GB-I00)
TEORIA Y APLICACIONES DE CONFIGURACIONES DE PUNTOS Y REDES (AEI-PID2019-104129GB-I00)
Abstract
Let P be a set of n points in the plane. We compute the value of ¿¿[0,2p) for which the rectilinear convex hull of P, denoted by RHP(¿), has minimum (or maximum) area in optimal O(nlogn) time and O(n) space, improving the previous O(n2) bound. Let O be a set of k lines through the origin sorted by slope and let ai be the sizes of the 2k angles defined by pairs of two consecutive lines, i=1,…,2k. Let Ti=p-ai and T=min{Ti:i=1,…,2k}. We obtain: (1) Given a set O such that T=p2, we provide an algorithm to compute the O-convex hull of P in optimal O(nlogn) time and O(n) space; If T<p2, the time and space complexities are O(nTlogn) and O(nT) respectively. (2) Given a set O such that T=p2, we compute and maintain the boundary of the O¿-convex hull of P for ¿¿[0,2p) in O(knlogn) time and O(kn) space, or if T<p2, in O(knTlogn) time and O(knT) space. (3) Finally, given a set O such that T=p2, we compute, in O(knlogn) time and O(kn) space, the angle ¿¿[0,2p) such that the O¿-convex hull of P has minimum (or maximum) area over all ¿¿[0,2p).
Description
This is a post-peer-review, pre-copyedit version of an article published in Journal of Global Optimization. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10898-020-00953-5
CitationAlegría-Galicia, C. [et al.]. Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations. "Journal of Global Optimization", Març 2021, vol. 79, núm. 3, p. 687-714.
ISSN1573-2916
Publisher versionhttps://link.springer.com/article/10.1007/s10898-020-00953-5
Other identifiershttps://arxiv.org/pdf/1710.10888.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
minimum_area_2019_02_18(1).pdf | 837,7Kb | View/Open |