Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.689 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations

Thumbnail
View/Open
minimum_area_2019_02_18(1).pdf (837,7Kb)
Share:
 
 
10.1007/s10898-020-00953-5
 
  View Usage Statistics
Cita com:
hdl:2117/340814

Show full item record
Alegría Galicia, Carlos
Orden Martin, David
Seara Ojea, CarlosMés informacióMés informacióMés informació
Urrutia Galicia, Jorge
Document typeArticle
Defense date2021-03
PublisherSpringer Nature
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectCONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
TEORIA Y APLICACIONES DE CONFIGURACIONES DE PUNTOS Y REDES (AEI-PID2019-104129GB-I00)
Abstract
Let P be a set of n points in the plane. We compute the value of ¿¿[0,2p) for which the rectilinear convex hull of P, denoted by RHP(¿), has minimum (or maximum) area in optimal O(nlogn) time and O(n) space, improving the previous O(n2) bound. Let O be a set of k lines through the origin sorted by slope and let ai be the sizes of the 2k angles defined by pairs of two consecutive lines, i=1,…,2k. Let Ti=p-ai and T=min{Ti:i=1,…,2k}. We obtain: (1) Given a set O such that T=p2, we provide an algorithm to compute the O-convex hull of P in optimal O(nlogn) time and O(n) space; If T<p2, the time and space complexities are O(nTlogn) and O(nT) respectively. (2) Given a set O such that T=p2, we compute and maintain the boundary of the O¿-convex hull of P for ¿¿[0,2p) in O(knlogn) time and O(kn) space, or if T<p2, in O(knTlogn) time and O(knT) space. (3) Finally, given a set O such that T=p2, we compute, in O(knlogn) time and O(kn) space, the angle ¿¿[0,2p) such that the O¿-convex hull of P has minimum (or maximum) area over all ¿¿[0,2p).
Description
This is a post-peer-review, pre-copyedit version of an article published in Journal of Global Optimization. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10898-020-00953-5
CitationAlegría-Galicia, C. [et al.]. Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations. "Journal of Global Optimization", Març 2021, vol. 79, núm. 3, p. 687-714. 
URIhttp://hdl.handle.net/2117/340814
DOI10.1007/s10898-020-00953-5
ISSN1573-2916
Publisher versionhttps://link.springer.com/article/10.1007/s10898-020-00953-5
Other identifiershttps://arxiv.org/pdf/1710.10888.pdf
Collections
  • Departament de Matemàtiques - Articles de revista [3.000]
  • CGA - Computational Geometry and Applications - Articles de revista [31]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
minimum_area_2019_02_18(1).pdf837,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina