dc.contributor.author | Guirado Liñan, Robert |
dc.contributor.author | Kwon, Hyoukjun |
dc.contributor.author | Abadal Cavallé, Sergi |
dc.contributor.author | Alarcón Cot, Eduardo José |
dc.contributor.author | Krishna, Tushar |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2021-03-02T10:47:53Z |
dc.date.available | 2021-03-02T10:47:53Z |
dc.date.issued | 2021 |
dc.identifier.citation | Guirado, R. [et al.]. Dataflow-architecture co-design for 2.5D DNN accelerators using wireless network-on-package. A: Asia and South Pacific Design Automation Conference. "ASPDAC '21: Proceedings of the 26th Asia and South Pacific Design Automation Conference". New York: Association for Computing Machinery (ACM), 2021, p. 806-812. ISBN 978-1-4503-7999-1. DOI 10.1145/3394885.3431537. |
dc.identifier.isbn | 978-1-4503-7999-1 |
dc.identifier.uri | http://hdl.handle.net/2117/340711 |
dc.description.abstract | Deep neural network (DNN) models continue to grow in size and complexity, demanding higher computational power to enable real-time inference. To efficiently deliver such computational demands, hardware accelerators are being developed and deployed across scales. This naturally requires an efficient scale-out mechanism for increasing compute density as required by the application. 2.5D integration over interposer has emerged as a promising solution, but as we show in this work, the limited interposer bandwidth and multiple hops in the Network-on-Package (NoP) can diminish the benefits of the approach. To cope with this challenge, we propose WIENNA, a wireless NoP-based 2.5D DNN accelerator. In WIENNA, the wireless NoP connects an array of DNN accelerator chiplets to the global buffer chiplet, providing high-bandwidth multicasting capabilities. Here, we also identify the dataflow style that most efficienty exploits the wireless NoP's high-bandwidth multicasting capability on each layer. With modest area and power overheads, WIENNA achieves 2.2X-5.1X higher throughput and 38.2% lower energy than an interposer-based NoP design. |
dc.description.sponsorship | This work was supported by the European Commission under grant 863337 and NSF under Award OAC-1909900. |
dc.format.extent | 7 p. |
dc.language.iso | eng |
dc.publisher | Association for Computing Machinery (ACM) |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors |
dc.subject.lcsh | Wireless communication systems |
dc.subject.lcsh | Neural networks (Computer science) |
dc.subject.other | 2.5-D integration |
dc.subject.other | Computational demands |
dc.subject.other | Computational power |
dc.subject.other | Data-flow architectures |
dc.subject.other | Hardware accelerators |
dc.subject.other | Lower energies |
dc.subject.other | Multicasting capability |
dc.subject.other | Real-time inference |
dc.title | Dataflow-architecture co-design for 2.5D DNN accelerators using wireless network-on-package |
dc.type | Conference report |
dc.subject.lemac | Comunicació sense fil, Sistemes de |
dc.subject.lemac | Xarxes neuronals (Informàtica) |
dc.contributor.group | Universitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla |
dc.contributor.group | Universitat Politècnica de Catalunya. EPIC - Energy Processing and Integrated Circuits |
dc.identifier.doi | 10.1145/3394885.3431537 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://dl.acm.org/doi/10.1145/3394885.3431537 |
dc.rights.access | Open Access |
local.identifier.drac | 30583108 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/863337/EU/Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures/WiPLASH |
local.citation.author | Guirado, R.; Kwon, H.; Abadal, S.; Alarcón, E.; Krishna, T. |
local.citation.contributor | Asia and South Pacific Design Automation Conference |
local.citation.pubplace | New York |
local.citation.publicationName | ASPDAC '21: Proceedings of the 26th Asia and South Pacific Design Automation Conference |
local.citation.startingPage | 806 |
local.citation.endingPage | 812 |