Show simple item record

dc.contributor.authorGuirado Liñan, Robert
dc.contributor.authorKwon, Hyoukjun
dc.contributor.authorAbadal Cavallé, Sergi
dc.contributor.authorAlarcón Cot, Eduardo José
dc.contributor.authorKrishna, Tushar
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2021-03-02T10:47:53Z
dc.date.available2021-03-02T10:47:53Z
dc.date.issued2021
dc.identifier.citationGuirado, R. [et al.]. Dataflow-architecture co-design for 2.5D DNN accelerators using wireless network-on-package. A: Asia and South Pacific Design Automation Conference. "ASPDAC '21: Proceedings of the 26th Asia and South Pacific Design Automation Conference". New York: Association for Computing Machinery (ACM), 2021, p. 806-812. ISBN 978-1-4503-7999-1. DOI 10.1145/3394885.3431537.
dc.identifier.isbn978-1-4503-7999-1
dc.identifier.urihttp://hdl.handle.net/2117/340711
dc.description.abstractDeep neural network (DNN) models continue to grow in size and complexity, demanding higher computational power to enable real-time inference. To efficiently deliver such computational demands, hardware accelerators are being developed and deployed across scales. This naturally requires an efficient scale-out mechanism for increasing compute density as required by the application. 2.5D integration over interposer has emerged as a promising solution, but as we show in this work, the limited interposer bandwidth and multiple hops in the Network-on-Package (NoP) can diminish the benefits of the approach. To cope with this challenge, we propose WIENNA, a wireless NoP-based 2.5D DNN accelerator. In WIENNA, the wireless NoP connects an array of DNN accelerator chiplets to the global buffer chiplet, providing high-bandwidth multicasting capabilities. Here, we also identify the dataflow style that most efficienty exploits the wireless NoP's high-bandwidth multicasting capability on each layer. With modest area and power overheads, WIENNA achieves 2.2X-5.1X higher throughput and 38.2% lower energy than an interposer-based NoP design.
dc.description.sponsorshipThis work was supported by the European Commission under grant 863337 and NSF under Award OAC-1909900.
dc.format.extent7 p.
dc.language.isoeng
dc.publisherAssociation for Computing Machinery (ACM)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors
dc.subject.lcshWireless communication systems
dc.subject.lcshNeural networks (Computer science)
dc.subject.other2.5-D integration
dc.subject.otherComputational demands
dc.subject.otherComputational power
dc.subject.otherData-flow architectures
dc.subject.otherHardware accelerators
dc.subject.otherLower energies
dc.subject.otherMulticasting capability
dc.subject.otherReal-time inference
dc.titleDataflow-architecture co-design for 2.5D DNN accelerators using wireless network-on-package
dc.typeConference report
dc.subject.lemacComunicació sense fil, Sistemes de
dc.subject.lemacXarxes neuronals (Informàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
dc.contributor.groupUniversitat Politècnica de Catalunya. EPIC - Energy Processing and Integrated Circuits
dc.identifier.doi10.1145/3394885.3431537
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://dl.acm.org/doi/10.1145/3394885.3431537
dc.rights.accessOpen Access
local.identifier.drac30583108
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/863337/EU/Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures/WiPLASH
local.citation.authorGuirado, R.; Kwon, H.; Abadal, S.; Alarcón, E.; Krishna, T.
local.citation.contributorAsia and South Pacific Design Automation Conference
local.citation.pubplaceNew York
local.citation.publicationNameASPDAC '21: Proceedings of the 26th Asia and South Pacific Design Automation Conference
local.citation.startingPage806
local.citation.endingPage812


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record