Caterpillars are antimagic
View/Open
Lozano et al.pdf (356,1Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/340688
Document typeArticle
Defense date2021-01-21
Rights accessRestricted access - publisher's policy
(embargoed until 2022-01-21)
European Commission's projectAUTAR - A Unified Theory of Algorithmic Relaxations (EC-H2020-648276)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
Abstract
An antimagic labeling of a graph G is a bijection from the set of edges E(G) to {1,2,…,|E(G)|}, such that all vertex sums are pairwise distinct, where the vertex sum at vertex u is the sum of the labels assigned to the edges incident to u. A graph is called antimagic when it has an antimagic labeling. Hartsfield and Ringel conjectured that every simple connected graph other than K2 is antimagic and the conjecture remains open even for trees. Here, we prove that caterpillars are antimagic by means of an O(nlogn) algorithm.
CitationLozano, A. [et al.]. Caterpillars are antimagic. "Mediterranean journal of mathematics", 21 Gener 2021, vol. 18, núm. 2, article 39, p. 1-12.
ISSN1660-5446
Publisher versionhttps://link.springer.com/article/10.1007%2Fs00009-020-01688-z
Other identifiershttps://arxiv.org/abs/1812.06715v2
Collections
- Departament de Ciències de la Computació - Articles de revista [830]
- DCG - Discrete and Combinatorial Geometry - Articles de revista [3]
- Departament de Matemàtiques - Articles de revista [2.596]
- COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions - Articles de revista [236]
- CGA - Computational Geometry and Applications - Articles de revista [15]
Files | Description | Size | Format | View |
---|---|---|---|---|
Lozano et al.pdf![]() | 356,1Kb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder