Show simple item record

dc.contributor.authorSusín Sánchez, Antonio
dc.contributor.authorCalle, M. L.
dc.contributor.authorWang, Yiwen
dc.contributor.authorLe Cao, Kim-Anh
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.identifier.citationSusin, A. [et al.]. Variable selection in microbiome compositional data analysis. "NAR Genomics and Bioinformatics", 1 Juny 2020, vol. 2, núm. 2, p. lqaa0297/1-lqaa029/14.
dc.description.abstractThough variable selection is one of the most relevant tasks in microbiome analysis, e.g. for the identification of microbial signatures, many studies still rely on methods that ignore the compositional nature of microbiome data. The applicability of compositional data analysis methods has been hampered by the availability of software and the difficulty in interpreting their results. This work is focused on three methods for variable selection that acknowledge the compositional structure of microbiome data: selbal, a forward selection approach for the identification of compositional balances, and clr-lasso and codalasso, two penalized regression models for compositional data analysis. This study highlights the link between these methods and brings out some limitations of the centered log-ratio transformation for variable selection. In particular, the fact that it is not subcompositionally consistent makes the microbial signatures obtained from clr-lasso not readily transferable. Coda-lasso is computationally efficient and suitable when the focus is the identification of the most associated microbial taxa. Selbal stands out when the goal is to obtain a parsimonious model with optimal prediction performance, but it is computationally greedy. We provide a reproducible vignette for the application of these methods that will enable researchers to fully leverage their potential in microbiome studies.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut
dc.titleVariable selection in microbiome compositional data analysis
dc.subject.lemacADN -- Estructura
dc.contributor.groupUniversitat Politècnica de Catalunya. ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
local.citation.authorSusin, A.; Calle, M.; Wang, Y.; Le Cao, K.
local.citation.publicationNameNAR Genomics and Bioinformatics

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain