Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.624 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • LAB - Laboratori d'Aplicacions Bioacústiques
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • LAB - Laboratori d'Aplicacions Bioacústiques
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Event reconstruction for KM3NeT/ORCA using convolutional neural networks

Thumbnail
View/Open
Aiello_2020_J._Inst._15_P10005.pdf (2,946Mb)
Share:
 
 
10.1088/1748-0221/15/10/P10005
 
  View Usage Statistics
Cita com:
hdl:2117/340267

Show full item record
Aiello, S
Albert, A.
Alves Garre, Sergio
Ameli, F
André, MichelMés informacióMés informacióMés informació
Androulakis, Giorgos
Anghinolfi, Marco
Anguita, M.
Anton, Gisela
Aublin, J.
Bagatelas, Christos
Barbarino, G.C.
Baret, B.
Document typeArticle
Defense date2020-10-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches
CitationAiello, S. [et al.]. Event reconstruction for KM3NeT/ORCA using convolutional neural networks. "Journal of instrumentation", 1 Octubre 2020, vol. 15, núm. P10005, p. 1-40. 
URIhttp://hdl.handle.net/2117/340267
DOI10.1088/1748-0221/15/10/P10005
ISSN1748-0221
Publisher versionhttps://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005
Collections
  • LAB - Laboratori d'Aplicacions Bioacústiques - Articles de revista [117]
  • Centre Tecnològic de Vilanova i la Geltrú - Articles de revista [131]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Aiello_2020_J._Inst._15_P10005.pdf2,946MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina