Show simple item record

dc.contributor.authorArjona Martínez, Jamie
dc.contributor.authorLinares Herreros, María Paz
dc.contributor.authorCasanovas Garcia, Josep
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Estadística i Investigació Operativa
dc.contributor.otherFacultat d'Informàtica de Barcelona
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2021-02-18T09:06:43Z
dc.date.available2021-12-25T01:29:59Z
dc.date.issued2021
dc.identifier.citationArjona, J.; Linares, M.P.; Casanovas, J. Characterizing parking systems from sensor data through a data-driven approach. "Transportation letters: the international journal of transportation research", 2021, vol. 13, núm. 3, p. 183-192.
dc.identifier.issn1942-7867
dc.identifier.urihttp://hdl.handle.net/2117/340016
dc.description.abstractNowadays, urban traffic affects the quality of life in cities as the problem becomes even more exacerbated by parking issues: congestion increases due to drivers searching slots to park. An Internet of Things approach permits drivers to know the parking availability in real time and provides data that can be used to develop predictive models. This can be useful in improving the management of parking areas while having an important effect on traffic. This work begins by describing the state-of-the-art parking predictive models and, then, introduces the recurrent neural network methods that were used Long Short-Term Memory and Gated Recurrent Unit, as well as the models developed according to real scenarios in Wattens and Los Angeles. To improve the quality of the models, exogenous variables related to weather and calendar are considered. Finally, the results are described, followed by suggestions for future research.
dc.description.sponsorshipThis research was funded by Secretaria d’Universitats i Recerca de la Generalitat de Catalunya [2017-SGR-1749] and under the Industrial Doctorate Program [2016-DI-79].
dc.format.extent10 p.
dc.language.isoeng
dc.publisherInforma UK (Taylor & Francis)
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Modelització matemàtica
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Infraestructures i modelització dels transports::Transport urbà
dc.subject.lcshAutomobile parking
dc.subject.lcshReal-time data processing
dc.subject.lcshMachine learning
dc.subject.otherParking availability forecast
dc.subject.otherDeep learning
dc.subject.otherSmart cities
dc.subject.otherRecurrent models
dc.subject.otherTime series
dc.titleCharacterizing parking systems from sensor data through a data-driven approach
dc.typeArticle
dc.subject.lemacAutomòbils -- Aparcament
dc.subject.lemacTemps real (Informàtica)
dc.subject.lemacAprenentatge automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. IMP - Information Modeling and Processing
dc.identifier.doi10.1080/19427867.2020.1866331
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.tandfonline.com/doi/abs/10.1080/19427867.2020.1866331
dc.rights.accessOpen Access
local.identifier.drac30566726
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AGAUR/2017 SGR 1749
local.citation.authorArjona, J.; Linares, M. P.; Casanovas, J.
local.citation.publicationNameTransportation letters: the international journal of transportation research
local.citation.volume13
local.citation.number3
local.citation.startingPage183
local.citation.endingPage192


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record