dc.contributor.author | Arjona Martínez, Jamie |
dc.contributor.author | Linares Herreros, María Paz |
dc.contributor.author | Casanovas Garcia, Josep |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Estadística i Investigació Operativa |
dc.contributor.other | Facultat d'Informàtica de Barcelona |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa |
dc.contributor.other | Barcelona Supercomputing Center |
dc.date.accessioned | 2021-02-18T09:06:43Z |
dc.date.available | 2021-12-25T01:29:59Z |
dc.date.issued | 2021 |
dc.identifier.citation | Arjona, J.; Linares, M.P.; Casanovas, J. Characterizing parking systems from sensor data through a data-driven approach. "Transportation letters: the international journal of transportation research", 2021, vol. 13, núm. 3, p. 183-192. |
dc.identifier.issn | 1942-7867 |
dc.identifier.uri | http://hdl.handle.net/2117/340016 |
dc.description.abstract | Nowadays, urban traffic affects the quality of life in cities as the problem becomes even more exacerbated by parking issues: congestion increases due to drivers searching slots to park. An Internet of Things approach permits drivers to know the parking availability in real time and provides data that can be used to develop predictive models. This can be useful in improving the management of parking areas while having an important effect on traffic. This work begins by describing the state-of-the-art parking predictive models and, then, introduces the recurrent neural network methods that were used Long Short-Term Memory and Gated Recurrent Unit, as well as the models developed according to real scenarios in Wattens and Los Angeles. To improve the quality of the models, exogenous variables related to weather and calendar are considered. Finally, the results are described, followed by suggestions for future research. |
dc.description.sponsorship | This research was funded by Secretaria d’Universitats i Recerca de la Generalitat de Catalunya [2017-SGR-1749] and under the Industrial Doctorate Program [2016-DI-79]. |
dc.format.extent | 10 p. |
dc.language.iso | eng |
dc.publisher | Informa UK (Taylor & Francis) |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Modelització matemàtica |
dc.subject | Àrees temàtiques de la UPC::Enginyeria civil::Infraestructures i modelització dels transports::Transport urbà |
dc.subject.lcsh | Automobile parking |
dc.subject.lcsh | Real-time data processing |
dc.subject.lcsh | Machine learning |
dc.subject.other | Parking availability forecast |
dc.subject.other | Deep learning |
dc.subject.other | Smart cities |
dc.subject.other | Recurrent models |
dc.subject.other | Time series |
dc.title | Characterizing parking systems from sensor data through a data-driven approach |
dc.type | Article |
dc.subject.lemac | Automòbils -- Aparcament |
dc.subject.lemac | Temps real (Informàtica) |
dc.subject.lemac | Aprenentatge automàtic |
dc.contributor.group | Universitat Politècnica de Catalunya. IMP - Information Modeling and Processing |
dc.identifier.doi | 10.1080/19427867.2020.1866331 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.tandfonline.com/doi/abs/10.1080/19427867.2020.1866331 |
dc.rights.access | Open Access |
local.identifier.drac | 30566726 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AGAUR/2017 SGR 1749 |
local.citation.author | Arjona, J.; Linares, M. P.; Casanovas, J. |
local.citation.publicationName | Transportation letters: the international journal of transportation research |
local.citation.volume | 13 |
local.citation.number | 3 |
local.citation.startingPage | 183 |
local.citation.endingPage | 192 |