Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.781 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterizing parking systems from sensor data through a data-driven approach

Thumbnail
View/Open
TL - Arjona et al.pdf (1,217Mb)
Share:
 
 
10.1080/19427867.2020.1866331
 
  View Usage Statistics
Cita com:
hdl:2117/340016

Show full item record
Arjona Martínez, JamieMés informacióMés informacióMés informació
Linares Herreros, María PazMés informacióMés informacióMés informació
Casanovas Garcia, JosepMés informacióMés informació
Document typeArticle
Defense date2021
PublisherInforma UK (Taylor & Francis)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Nowadays, urban traffic affects the quality of life in cities as the problem becomes even more exacerbated by parking issues: congestion increases due to drivers searching slots to park. An Internet of Things approach permits drivers to know the parking availability in real time and provides data that can be used to develop predictive models. This can be useful in improving the management of parking areas while having an important effect on traffic. This work begins by describing the state-of-the-art parking predictive models and, then, introduces the recurrent neural network methods that were used Long Short-Term Memory and Gated Recurrent Unit, as well as the models developed according to real scenarios in Wattens and Los Angeles. To improve the quality of the models, exogenous variables related to weather and calendar are considered. Finally, the results are described, followed by suggestions for future research.
CitationArjona, J.; Linares, M.P.; Casanovas, J. Characterizing parking systems from sensor data through a data-driven approach. "Transportation letters: the international journal of transportation research", 2021, vol. 13, núm. 3, p. 183-192. 
URIhttp://hdl.handle.net/2117/340016
DOI10.1080/19427867.2020.1866331
ISSN1942-7867
Publisher versionhttps://www.tandfonline.com/doi/abs/10.1080/19427867.2020.1866331
Collections
  • Computer Sciences - Articles de revista [277]
  • Doctorat en Estadística i Investigació Operativa - Articles de revista [63]
  • Departament d'Estadística i Investigació Operativa - Articles de revista [636]
  • IMP - Information Modeling and Processing - Articles de revista [106]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TL - Arjona et al.pdf1,217MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina