Show simple item record

dc.contributor.authorSáez Viñas, Pablo
dc.contributor.authorEppell, Steven J.
dc.contributor.authorBallarini, Roberto
dc.contributor.authorRodríguez Matas, José Félix
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2021-02-16T10:05:07Z
dc.date.issued2020-05-01
dc.identifier.citationSaez, P. [et al.]. A complementary energy approach accommodates scale differences in soft tissues. "Journal of the mechanics and physics of solids", 1 Maig 2020, vol. 138, núm. 103895, p. 103895:1-103895:9.
dc.identifier.issn0022-5096
dc.identifier.urihttp://hdl.handle.net/2117/339719
dc.description© 2020 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.abstractThe mechanics of biological entities, from single molecules to the whole organ, has been extensively analyzed during the last decades. At the smaller scales, statistical mechanics has fostered successful physical models of proteins and molecules, which have been later incorporated within constitutive models of rubber-like materials and biological tissues. At the macroscopic scale, the additive decomposition of energy functions i.e., a parallel arrangement of the tissue constituent, has been recurrently used to account for the internal heterogeneity of soft biological materials. However, it has not yet been possible to unite the mechanics at the tissue level with the actual response of the tissue components. Here, we exemplify our approach using cardiovascular tissue where the mechanical response at the tissue scale is in the range of kPa whereas the elastic modulus of collagen, the main component of the vascular tissue, is in the range of MPa GPa. In this work we develop a novel theoretical framework based on a complementary strain energy function that builds-up on a full network model. The complementary strain energy function introduces naturally an additive decomposition of the deformation gradient for the tissue constituents, i.e an arrangement in series of the constituents. We demonstrate that the macroscopic response of the tissue can be reproduced by just introducing the underlying mechanical and structural features of the micro-constituents, improving in a fundamental manner previous attempts in the mechanical characterization of soft biological tissues. The proposed theoretical framework unveils a new direction in the mechanical modeling of soft tissues and biological networks.
dc.language.isoeng
dc.rights©2020. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes numèrics
dc.subject.lcshStrength of materials
dc.subject.otherSoft biological tissues
dc.subject.otherNon-affine deformations
dc.subject.otherMicro-sphere
dc.titleA complementary energy approach accommodates scale differences in soft tissues
dc.typeArticle
dc.subject.lemacResistència de materials
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1016/j.jmps.2020.103895
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74S Numerical methods
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0022509620301319
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac27832015
dc.description.versionPostprint (author's final draft)
dc.date.lift2022-05-01
local.citation.authorSaez, P.; Eppell, S.; Ballarini, R.; Rodríguez, J.
local.citation.publicationNameJournal of the mechanics and physics of solids
local.citation.volume138
local.citation.number103895
local.citation.startingPage103895:1
local.citation.endingPage103895:9


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Generic