Continuous multi-objective zero-touch network slicing via twin delayed DDPG and OpenAI gym
View/Open
Article (2,292Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/338159
Document typeConference lecture
Defense date2020
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Project5G-SOLUTIONS - 5G Solutions for European Citizens (EC-H2020-856691)
MonB5G - Distributed management of Network Slices in beyond 5G (EC-H2020-871780)
UNICO PUNTO DE ASOCIACION EN REDES DE COMUNICACIONES MOVILES HETEROGENEAS DE 5ª GENERACION (AEI-TEC2017-87456-P)
MonB5G - Distributed management of Network Slices in beyond 5G (EC-H2020-871780)
UNICO PUNTO DE ASOCIACION EN REDES DE COMUNICACIONES MOVILES HETEROGENEAS DE 5ª GENERACION (AEI-TEC2017-87456-P)
Abstract
Artificial intelligence (AI)-driven zero-touch network slicing (NS) is a new paradigm enabling the automation of resource management and orchestration (MANO) in multi-tenant beyond 5G (B5G) networks. In this paper, we tackle the problem of cloud-RAN (C-RAN) joint slice admission control and resource allocation by first formulating it as a Markov decision process (MDP). We then invoke an advanced continuous deep reinforcement learning (DRL) method called twin delayed deep deterministic policy gradient (TD3) to solve it. In this intent, we introduce a multi-objective approach to make the central unit (CU) learn how to re-configure computing resources autonomously while minimizing latency, energy consumption and virtual network function (VNF) instantiation cost for each slice. Moreover, we build a complete 5G C-RAN network slicing environment using OpenAI Gym toolkit where, thanks to its standardized interface, it can be easily tested with different DRL schemes. Finally, we present extensive experimental results to showcase the gain of TD3 as well as the adopted multi-objective strategy in terms of achieved slice admission success rate, latency, energy saving and CPU utilization.
CitationRezazadeh, F. [et al.]. Continuous multi-objective zero-touch network slicing via twin delayed DDPG and OpenAI gym. A: IEEE Global Communications Conference. "Proceedings of IEEE Globecom 2020". Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 1-6. DOI 10.1109/GLOBECOM42002.2020.9322237.
Publisher versionhttps://ieeexplore.ieee.org/document/9322237
Other identifiershttps://zenodo.org/record/4459653#.YAylATmSmUk
Collections
- Doctorat en Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [188]
- WiComTec - Grup de recerca en Tecnologies i Comunicacions Sense Fils - Ponències/Comunicacions de congressos [175]
- Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.229]
Files | Description | Size | Format | View |
---|---|---|---|---|
2020 Globecomm ... uch Network 1570641726.pdf![]() | Article | 2,292Mb | Restricted access |