Eigenvalues with respect to a weight for general boundary value problems on networks
View/Open
Cita com:
hdl:2117/336840
Document typeArticle
Defense date2021-04-01
PublisherElsevier
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this work we analyze self-adjoint boundary value problems on networks for Schrödinger operators, in which a part of the boundary with a Neumann condition is always considered. We first characterize when the energy is positive semi-definite on the space of functions satisfying the null boundary conditions. To do this, the fundamental tools are the Doob transform and the discrete version of the trace function. Then, we raise eigenvalue problems with respect to a weight for general boundary value problems and we prove the discrete version of the Mercer Theorem. Finally, we apply the obtained results to a Dirichlet-Robin boundary value problem on a star-like network.
CitationCarmona, A.; Encinas, A.; Mitjana, M. Eigenvalues with respect to a weight for general boundary value problems on networks. "Linear algebra and its applications", 1 Abril 2021, vol. 614, p. 208-243.
ISSN0024-3795
Files | Description | Size | Format | View |
---|---|---|---|---|
EigenvaluesCEM.pdf | 527,1Kb | View/Open |