Show simple item record

dc.contributor.authorPapakokkinos, Giorgos
dc.contributor.authorCastro González, Jesús
dc.contributor.authorCapdevila Paramio, Roser
dc.contributor.authorDamble, Rashmin
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Tèrmica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics
dc.date.accessioned2021-01-21T17:54:36Z
dc.date.available2023-01-16T01:29:01Z
dc.date.issued2021-01-15
dc.identifier.citationPapakokkinos, G. [et al.]. A comprehensive simulation tool for adsorption-based solar-cooled buildings. Control strategy based on variable cycle duration. "Energy and buildings", 15 Gener 2021, vol. 231, p. 110591/1-110591/20.
dc.identifier.issn0378-7788
dc.identifier.urihttp://hdl.handle.net/2117/335766
dc.description.abstractAdsorption cooling systems (ACS) may contribute towards a sustainable way of satisfying the increasing cooling demand, as they utilize solar thermal energy and employ non-ozone-depleting substances. Apart from the intrinsic ACS performance, the successfulness of its operation depends on its integration within the entire thermal system (solar collectors, thermal storage and building), which is not straight-forward due to thermal inertia effects and its inherent cyclic operation. Numerical simulations can contribute in understanding the system behavior, its adequate dimensioning and the implementation of optimized control strategies. A computational model was developed, capable of performing conjugate, dynamic simulations of the entire thermal system. The influence of the control criteria is investigated and quantified through three simulation phases, conducted for various solar collectors areas and storage volumes. Higher solar fraction is achieved for lower auxiliary heater activation temperature and lower temperature difference activation of the solar pump. Subsequently, simulations with variable cycle duration were performed, using optimized cycle duration according to the instantaneous operating temperatures. This approach reduces significantly the auxiliary consumption or satifies the demand with less solar collectors. The potential CO2 emissions avoidance is calculated between 28.1-90.7% with respect to four scenarios of electricity-driven systems of different performance and CO2 emission intensity.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 4.0
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Física::Termodinàmica
dc.subject.lcshAdsorption
dc.subject.lcshCooling
dc.subject.lcshSolar thermal energy
dc.subject.lcshAir conditioning
dc.subject.otherBuilding simulation
dc.subject.otherAdsorption cooling
dc.subject.otherSolar energy
dc.subject.otherSolar cooling
dc.titleA comprehensive simulation tool for adsorption-based solar-cooled buildings. Control strategy based on variable cycle duration
dc.typeArticle
dc.subject.lemacAdsorció
dc.subject.lemacRefrigeració
dc.subject.lemacEnergia termica solar
dc.subject.lemacAire condicionat
dc.contributor.groupUniversitat Politècnica de Catalunya. CTTC - Centre Tecnològic de la Transferència de Calor
dc.identifier.doi10.1016/j.enbuild.2020.110591
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0378778820333776
dc.rights.accessOpen Access
local.identifier.drac30282554
dc.description.versionPostprint (author's final draft)
local.citation.authorPapakokkinos, G.; Castro, J.; Capdevila, R.; Damble, R.
local.citation.publicationNameEnergy and buildings
local.citation.volume231
local.citation.startingPage110591/1
local.citation.endingPage110591/20


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record