Mostra el registre d'ítem simple

dc.contributor.authorAbbasi, Hooman
dc.contributor.authorAntunes, Marcelo de Sousa Pais
dc.contributor.authorVelasco Perero, José Ignacio
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
dc.date.accessioned2021-01-15T14:07:23Z
dc.date.available2021-01-15T14:07:23Z
dc.date.issued2020-12-04
dc.identifier.citationAbbasi, H.; De Sousa Pais, M.; Velasco J.I. Electrical conduction behavior of high-performance microcellular nanocomposites made of graphene nanoplatelet-filled polysulfone. "Nanomaterials", 4 Desembre 2020, vol. 10, núm. 12, p. 2425:1-2425:12.
dc.identifier.issn2079-4991
dc.identifier.urihttp://hdl.handle.net/2117/335406
dc.description.abstractGraphene nanoplatelet (GnP)-filled polysulfone (PSU) cellular nanocomposites, prepared by two different methods—namely, water vapor-induced phase separation (WVIPS) and supercritical CO2 dissolution (scCO2) foaming—were produced with a range of densities from 0.4 to 0.6 g/cm3 and characterized in terms of their structure and electrical conduction behavior. The GnP content was varied from 0 to 10 wt%. The electrical conductivity values were increased with the amount of GnP for the three different studied foam series. The highest values were found for the microcellular nanocomposites prepared by the WVIPS method, reaching as high as 8.17 × 10-2 S/m for 10 wt% GnP. The variation trend of the electrical conductivity for each series was analyzed by applying both the percolation and the tunneling models. Comparatively, the tunneling model showed a better fitting in the prediction of the electrical conductivity. The preparation technique of the cellular nanocomposite affected the resultant cellular structure of the nanocomposite and, as a result, the porosity or gas volume fraction (Vg). A higher porosity resulted in a higher electrical conductivity, with the lightest foams being prepared by the WVIPS method, showing electrical conductivities two orders of magnitude higher than the equivalent foams prepared by the scCO2 dissolution technique
dc.language.isoeng
dc.rightsAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshNanocomposites (Materials)
dc.subject.lcshGraphene
dc.subject.lcshElectric conductivity
dc.subject.otherCellular nanocomposite
dc.subject.otherElectrical conductivity
dc.subject.otherGraphene nanoplatelets
dc.subject.otherPolysulfone
dc.titleElectrical conduction behavior of high-performance microcellular nanocomposites made of graphene nanoplatelet-filled polysulfone
dc.typeArticle
dc.subject.lemacNanocompòsits (Materials)
dc.subject.lemacGrafè
dc.subject.lemacConductivitat elèctrica
dc.contributor.groupUniversitat Politècnica de Catalunya. POLY2 - Polyfunctional polymeric materials
dc.identifier.doi10.3390/nano10122425
dc.relation.publisherversionhttps://www.mdpi.com/2079-4991/10/12/2425
dc.rights.accessOpen Access
local.identifier.drac29979394
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-89787-P/ES/ESPUMAS POLIMERICAS MULTIFUNCIONALES BASADAS EN TERMOPLASTICOS DE ALTA TEMPERATURA/
local.citation.authorAbbasi, H.; De Sousa Pais, M.; Velasco J.I.
local.citation.publicationNameNanomaterials
local.citation.volume10
local.citation.number12
local.citation.startingPage2425:1
local.citation.endingPage2425:12


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple