Show simple item record

dc.contributorRadeva, Petia
dc.contributorCastán, Javier
dc.contributor.authorToneu Panicot, Magí
dc.contributor.otherUniversitat Politècnica de Catalunya
dc.date.accessioned2021-01-13T18:36:39Z
dc.date.issued2020-01
dc.identifier.urihttp://hdl.handle.net/2117/335296
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.lcshDeep learning
dc.subject.otherAprenentatge profund
dc.subject.otheraprenentatge de representació no supervisat
dc.subject.otherdisentangled space
dc.subject.otherautoencoder
dc.subject.othervaritional autoencoder.
dc.subject.otherDeep learning
dc.subject.otherunsupervised representation learning
dc.subject.otherdisentangled space
dc.subject.otherautoencoder
dc.subject.othervaritional autoencoder.
dc.titleUnsupervised autoencoder for disentangled embedding generation
dc.typeMaster thesis
dc.subject.lemacAprenentatge profund
dc.identifier.slug148696
dc.rights.accessRestricted access - confidentiality agreement
dc.date.lift10000-01-01
dc.date.updated2020-09-21T06:46:26Z
dc.audience.educationlevelMàster
dc.audience.mediatorFacultat d'Informàtica de Barcelona
dc.audience.degreeMÀSTER UNIVERSITARI EN INTEL·LIGÈNCIA ARTIFICIAL (Pla 2017)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder