Hamiltonicity for convex shape Delaunay and Gabriel Graphs
View/Open
Main article plus additional details (full version) (1,252Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/335137
Document typeConference report
Defense date2019
PublisherSpringer
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectGRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES (MINECO-MTM2015-63791-R)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
Abstract
We study Hamiltonicity for some of the most general variants of Delaunay and Gabriel graphs. Instead of defining these proximity graphs using circles, we use an arbitrary convex shape C. Let S be a point set in the plane. The k-order Delaunay graph of S, denoted k-DGC(S), has vertex set S, and edges defined as follows. Given p, q ¿ S, pq is an edge of k-DGC(S) provided there exists some homothet of C with p and q on its boundary and containing at most k points of S different from p and q. The k-order Gabriel graph, denoted k-GGC(S), is defined analogously, except that the homothets considered are restricted to be smallest homothets of C with p and q on the boundary. We provide upper bounds on the minimum value of k for which k-GGC(S) is Hamiltonian. Since k-GGC(S) ¿ k-DGC(S), all results carry over to k-DGC(S). In particular, we give upper bounds of 24 for every C and 15 for every point-symmetric C. We also improve these bounds to 7 for squares, 11 for regular hexagons, 12 for regular octagons, and 11 for even-sided regular t-gons (for t = 10). These constitute the first general results on Hamiltonicity for convex shape Delaunay and Gabriel graphs. In addition, we show lower bounds of k = 3 and k = 6 on the existence of a bottleneck Hamiltonian cycle in the k-order Gabriel graph for squares and hexagons, respectively. Finally, we construct a point set such that for an infinite family of regular polygons Pt, the Delaunay graph DGPt does not contain a Hamiltonian cycle.
CitationBose, P. [et al.]. Hamiltonicity for convex shape Delaunay and Gabriel Graphs. A: Algorithms and Data Structures Symposium. "Algorithms and Data Structures: 16th International Symposium, WADS 2019: Edmonton, AB, Canada: august 5-7, 2019: proceedings". Berlín: Springer, 2019, p. 196-210. ISBN 978-3-030-24765-2. DOI 10.1007/978-3-030-24766-9_15.
ISBN978-3-030-24765-2
Publisher versionhttps://link.springer.com/chapter/10.1007%2F978-3-030-24766-9_15
Files | Description | Size | Format | View |
---|---|---|---|---|
Hamiltonicity_Full.pdf![]() | Main article plus additional details (full version) | 1,252Mb | Restricted access |