Show simple item record

dc.contributor.authorBose, Prosenjit
dc.contributor.authorCano Vila, María del Pilar
dc.contributor.authorSaumell Mendiola, Maria
dc.contributor.authorSilveira, Rodrigo Ignacio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2020-12-23T10:33:11Z
dc.date.issued2019
dc.identifier.citationBose, P. [et al.]. Hamiltonicity for convex shape Delaunay and Gabriel graphs. A: European Workshop on Computational Geometry. "35th European Workshop on Computational Geometry (EuroCG 2019): Utrecht, Netherlands: march 18-20, 2019: abstracts". 2019, p. 14:1-14:7.
dc.identifier.otherhttp://www.eurocg2019.uu.nl/papers/14.pdf
dc.identifier.urihttp://hdl.handle.net/2117/334837
dc.description.abstractWe study Hamiltonicity for some of the most general variants of Delaunay and Gabriel graphs. Let S be a point set in the plane. The k-order Delaunay graph of S, denoted k-DGC(S), has vertex set S and edge pq provided that there exists some homothet of C with p and q on its boundary and containing at most k points of S different from p and q. The k-order Gabriel graph k-GGC(S) is defined analogously, except for the fact that the homothets considered are restricted to be smallest homothets of C with p and q on its boundary. We provide upper bounds on the minimum value of k for which k-GGC(S) is Hamiltonian. Since k-GGC(S) ¿ k-DGC(S), all results carry over to k-DGC(S). In particular, we give upper bounds of 24 for every C and 15 for every point-symmetric C. We also improve the bound to 7 for squares, 11 for regular hexagons, 12 for regular octagons, and 11 for even-sided regular t-gons (for t = 10).
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics
dc.subject.lcshHamiltonian systems
dc.titleHamiltonicity for convex shape Delaunay and Gabriel graphs
dc.typeConference report
dc.subject.lemacHamilton, Sistemes de
dc.contributor.groupUniversitat Politècnica de Catalunya. CGA - Computational Geometry and Applications
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37K Infinite-dimensional Hamiltonian systems
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac28459152
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorBose, P.; Cano, M.; Saumell, M.; Silveira, R.
local.citation.contributorEuropean Workshop on Computational Geometry
local.citation.publicationName35th European Workshop on Computational Geometry (EuroCG 2019): Utrecht, Netherlands: march 18-20, 2019: abstracts
local.citation.startingPage14:1
local.citation.endingPage14:7


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder