Hamiltonicity for convex shape Delaunay and Gabriel graphs
dc.contributor.author | Bose, Prosenjit |
dc.contributor.author | Cano Vila, María del Pilar |
dc.contributor.author | Saumell Mendiola, Maria |
dc.contributor.author | Silveira, Rodrigo Ignacio |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2020-12-23T10:33:11Z |
dc.date.issued | 2019 |
dc.identifier.citation | Bose, P. [et al.]. Hamiltonicity for convex shape Delaunay and Gabriel graphs. A: European Workshop on Computational Geometry. "35th European Workshop on Computational Geometry (EuroCG 2019): Utrecht, Netherlands: march 18-20, 2019: abstracts". 2019, p. 14:1-14:7. |
dc.identifier.other | http://www.eurocg2019.uu.nl/papers/14.pdf |
dc.identifier.uri | http://hdl.handle.net/2117/334837 |
dc.description.abstract | We study Hamiltonicity for some of the most general variants of Delaunay and Gabriel graphs. Let S be a point set in the plane. The k-order Delaunay graph of S, denoted k-DGC(S), has vertex set S and edge pq provided that there exists some homothet of C with p and q on its boundary and containing at most k points of S different from p and q. The k-order Gabriel graph k-GGC(S) is defined analogously, except for the fact that the homothets considered are restricted to be smallest homothets of C with p and q on its boundary. We provide upper bounds on the minimum value of k for which k-GGC(S) is Hamiltonian. Since k-GGC(S) ¿ k-DGC(S), all results carry over to k-DGC(S). In particular, we give upper bounds of 24 for every C and 15 for every point-symmetric C. We also improve the bound to 7 for squares, 11 for regular hexagons, 12 for regular octagons, and 11 for even-sided regular t-gons (for t = 10). |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Sistemes dinàmics |
dc.subject.lcsh | Hamiltonian systems |
dc.title | Hamiltonicity for convex shape Delaunay and Gabriel graphs |
dc.type | Conference report |
dc.subject.lemac | Hamilton, Sistemes de |
dc.contributor.group | Universitat Politècnica de Catalunya. CGA - Computational Geometry and Applications |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::37 Dynamical systems and ergodic theory::37K Infinite-dimensional Hamiltonian systems |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 28459152 |
dc.description.version | Postprint (published version) |
dc.date.lift | 10000-01-01 |
local.citation.author | Bose, P.; Cano, M.; Saumell, M.; Silveira, R. |
local.citation.contributor | European Workshop on Computational Geometry |
local.citation.publicationName | 35th European Workshop on Computational Geometry (EuroCG 2019): Utrecht, Netherlands: march 18-20, 2019: abstracts |
local.citation.startingPage | 14:1 |
local.citation.endingPage | 14:7 |
Files in this item
This item appears in the following Collection(s)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder