Show simple item record

dc.contributor.authorGrillone, Benedetto
dc.contributor.authorDanov, Stoyan
dc.contributor.authorSumper, Andreas
dc.contributor.authorCipriano Lindez, Jordi
dc.contributor.authorMor, Gerard
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Elèctrica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica
dc.date.accessioned2020-12-22T08:12:27Z
dc.date.available2022-10-01T00:26:40Z
dc.date.issued2020-10
dc.identifier.citationGrillone, B. [et al.]. A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings. "Renewable and sustainable energy reviews", Octubre 2020, vol. 131, p. 110027-1-110027-12.
dc.identifier.issn1364-0321
dc.identifier.urihttp://hdl.handle.net/2117/334747
dc.description.abstractIncreasing the energy efficiency of the built environment has become a priority worldwide and especially in Europe. Because of the relatively low turnover rate of the existing built environment, energy efficiency retrofitting appears to be a fundamental step in reducing its energy consumption. Last experiences have shown that there is a vast energy efficiency potential lying in the building stock, and it is mainly untapped. One of the reasons is a lack of robust methodologies able to evaluate the effect of applied energy efficiency measures and inform about the expected impact of potential retrofitting strategies. Nowadays, dynamic measured data coming from automated metering infrastructure provides valuable information to evaluate the effect of energy conservation strategies. For this reason, energy performance modeling and assessment methods based on this data are starting to play a major role. In this paper, several methodologies for the measurement and verification of energy savings, and for the prediction and recommendation of energy retrofitting strategies, are analysed in detail. Practitioners looking at different options for these two processes, will find in this review a thorough and detailed overview of the different methods that can be used. Guidance is also provided to determine which method could work best depending on the specific case under analysis. The reviewed approaches include statistical learning models, machine learning models, Bayesian methods, deterministic approaches, and hybrid techniques that combine deterministic and data-driven modeling. Existing research gaps are identified and prospects for future investigation are presented within the main conclusions of this research work.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Energies
dc.subject.lcshRenewable energy sources
dc.subject.lcshBuildings -- Energy conservation
dc.subject.otherBuilding energy retrofitting
dc.subject.otherEnergy savings evaluation
dc.subject.otherData-driven approach
dc.subject.otherMeasurement and verification
dc.subject.otherRetrofitting decision support
dc.subject.otherEnergy performance improvement
dc.titleA review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings
dc.typeArticle
dc.subject.lemacEnergies renovables
dc.subject.lemacEdificis -- Estalvi d'energia
dc.contributor.groupUniversitat Politècnica de Catalunya. CITCEA - Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments
dc.identifier.doi10.1016/j.rser.2020.110027
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S136403212030318X
dc.rights.accessOpen Access
local.identifier.drac28863733
dc.description.versionPostprint (author's final draft)
local.citation.authorGrillone, B.; Danov, S.; Sumper, A.; Cipriano, J.; Mor, G.
local.citation.publicationNameRenewable and sustainable energy reviews
local.citation.volume131
local.citation.startingPage110027-1
local.citation.endingPage110027-12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record