Mostra el registre d'ítem simple

dc.contributor.authorRaschi Schaw, Marcelo
dc.contributor.authorLloberas Valls, Oriol
dc.contributor.authorHuespe, Alfredo Edmundo
dc.contributor.authorOliver Olivella, Xavier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2020-12-17T12:21:50Z
dc.date.available2022-12-15T01:29:56Z
dc.date.issued2021-03
dc.identifier.citationRaschi, M. [et al.]. High performance reduction technique for multiscale finite element modeling (HPR-FE2): towards industrial multiscale FE software. "Computer methods in applied mechanics and engineering", Març 2021, vol. 375, p. 113580:1-113580:23.
dc.identifier.issn0045-7825
dc.identifier.urihttp://hdl.handle.net/2117/334612
dc.description.abstractThe authors have shown in previous contributions that reduced order modeling with optimal cubature applied to finite element square (FE) techniques results in a reliable and affordable multiscale approach, the HPR-FE2 technique. Such technique is assessed here for an industrial case study of a generic 3D reinforced composite whose microstructure is represented by two general microcells accounting for different deformation mechanisms, microstrucural phases and geometry arrangement. Specifically, in this approach the microstrain modes used for building the reduced order model (ROM) are obtained through standard proper orthogonal decomposition (POD) techniques applied over snapshots of a representative sampling strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main free energy modes resulting from the sampling energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the microstructural phases. It is emphasized that stresses are computed according to the selected constitutive law at the reduced integration points and, therefore, the strategy inherits advantageous properties such as model completeness and customization of material properties. Overall results are discussed in terms of the consistency of the multiscale analysis, customization of the microscopic material parameters and speedup ratios compared to high-fidelity finite element (HF) simulations.
dc.description.sponsorshipThe authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa Programme for Centres of Excellence in R&D, Spain” (CEX2018-000797-S) and the research grant DPI2017-85521-P for the project “Computational design of Acoustic and Mechanical Metamaterials” (METAMAT), Spain. This research has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Proof of Concept Grant agreement 874481) through the project “Computational design and prototyping of acoustic metamaterials for target ambient noise reduction” (METACOUSTIC). The authors also acknowledge the guidance and assistance with the microcells meshes from Dr. Pedro Camanho and Dr. Fermín Otero from INEGI (Portugal) during the preparation of this manuscript.
dc.language.isoeng
dc.rights© 2019. Elsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshMultiscale modeling
dc.subject.otherMultiscale modeling
dc.subject.otherComputational homogenization
dc.subject.otherReduced energy-based optimal cubature (REOC)
dc.subject.otherHigh-performance reduced finite element square (HPR-FE2)
dc.titleHigh performance reduction technique for multiscale finite element modeling (HPR-FE2): towards industrial multiscale FE software
dc.typeArticle
dc.subject.lemacModelització en etapes múltiples
dc.contributor.groupUniversitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures en l'Enginyeria
dc.identifier.doi10.1016/j.cma.2020.113580
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0045782520307659
dc.rights.accessOpen Access
local.identifier.drac30019115
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85521-P/ES/DISEÑO COMPUTACIONAL DE METAMATERIALES ACUSTICOS Y MECANICOS/
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/874481/EU/Computational design and prototyping of acoustic metamaterials for tailored insulation of noise/METACOUSTIC
local.citation.authorRaschi, M.; Lloberas-Valls, O.; Huespe, A.; Oliver, J.
local.citation.publicationNameComputer methods in applied mechanics and engineering
local.citation.volume375
local.citation.startingPage113580:1
local.citation.endingPage113580:23


Fitxers d'aquest items

Thumbnail
Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple