Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.772 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Arquitectura de Computadors
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Arquitectura de Computadors
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Demystifying power and performance bottlenecks in autonomous driving systems

Thumbnail
View/Open
Demystifying power and performance bottlenecks in autonomous driving systems.pdf (523,9Kb)
Share:
 
 
10.1109/IISWC50251.2020.00028
 
  View Usage Statistics
Cita com:
hdl:2117/334539

Show full item record
Exenberger Becker, Pedro HenriqueMés informacióMés informació
Arnau Montañés, José MaríaMés informacióMés informació
González Colás, Antonio MaríaMés informacióMés informacióMés informació
Document typeConference report
Defense date2020
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectCoCoUnit - CoCoUnit: An Energy-Efficient Processing Unit for Cognitive Computing (EC-H2020-833057)
Abstract
Autonomous Vehicles (AVs) have the potential to radically change the automotive industry. However, computing solutions for AVs have to meet severe performance and power constraints to guarantee a safe driving experience. Current solutions either exhibit high cost and power dissipation or fail to meet the stringent latency constraints. Therefore, the popularization of AVs requires a low-cost yet effective computing system. Understanding the sources of latency and energy consumption is key in order to improve autonomous driving systems. In this paper, we present a detailed characterization of Autoware, a modern self-driving car system. We analyze the performance and power of the different components and leverage hardware counters to identify the main bottlenecks. Our approach to AV characterization avoids pitfalls of previous works: profiling individual components in isolation and neglecting LiDAR-related components. We base our characterization on a rigorous methodology that considers the entire software stack. Profiling the end-to-end system accounts for interference and contention among different components that run in parallel, also including memory transfers to communicate data. We show that all these factors have a high impact on latency and cannot be measured by profiling isolated modules. Our characterization provides novel insights, some of the interesting findings are the following. First, contention among different modules drastically impacts latency and performance predictability. Second, LiDAR-related components are important contributors to the latency of the system. Finally, a modern platform with a high-end CPU and GPU cannot achieve real-time performance when considering the entire end-to-end system.
Description
©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
CitationExenberger, P.; Arnau, J.; González, A. Demystifying power and performance bottlenecks in autonomous driving systems. A: IEEE International Symposium on Workload Characterization. "2020 IEEE International Symposium on Workload Characterization: 27–29 October 2020, online event: proceedings". Institute of Electrical and Electronics Engineers (IEEE), 2020, p. 205-215. ISBN 978-1-7281-7645-1. DOI 10.1109/IISWC50251.2020.00028. 
URIhttp://hdl.handle.net/2117/334539
DOI10.1109/IISWC50251.2020.00028
ISBN978-1-7281-7645-1
Publisher versionhttps://ieeexplore.ieee.org/document/9251251
Collections
  • Doctorat en Arquitectura de Computadors - Ponències/Comunicacions de congressos [232]
  • ARCO - Microarquitectura i Compiladors - Ponències/Comunicacions de congressos [178]
  • Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.849]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Demystifying po ... nomous driving systems.pdf523,9KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina