Show simple item record

dc.contributor.authorLuo, Yongyao
dc.contributor.authorPresas Batlló, Alexandre
dc.contributor.authorWang, Zhengwei
dc.contributor.authorXiao, Yexiang
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Mecànica de Fluids
dc.date.accessioned2020-12-15T15:46:50Z
dc.date.available2022-01-01T01:29:36Z
dc.date.issued2020-01
dc.identifier.citationLuo, Y. [et al.]. Operating conditions leading to crack propagation in turbine blades of tidal barrages. Influence of head and operating mode. "Engineering failure analysis", 2020, vol. 108, núm. 104254, p. 104254:1-104254:13.
dc.identifier.issn1350-6307
dc.identifier.urihttp://hdl.handle.net/2117/334483
dc.description.abstractTidal energy systems and specifically tidal barrages are renewable energy systems, that use the potential energy of tides to produce electricity. Actually, there are few tidal power stations operating, although recent studies show the potentiality of installing new units in a recent future due to the constant improvement of the technology related. As in other conventional hydropower systems, the runner is one of the critical components of the unit as it has to withstand an extreme wide range of relative head and two main operating modes (ebb and flood). Therefore, fatigue problems and undesirable failures are more likely to occur. Based on the analysis of a crack found in one of the blades of a prototype, this paper analyzes and discusses under which operating conditions the runner is more likely to suffer from fatigue problems. CFD and FEM simulation models have been used to determine the stress hotspots, which approximate very well the point where the real crack was initiated. Based on a probabilistic approach of an existing initial defect or flaw, the reliability of the blades, or the probability of not growing a crack and therefore last an infinite life, has been calculated for a wide range of operating conditions. While fatigue problems have been deeply discussed and analyzed in conventional turbines, the flow excitation characteristics in these units exhibit important differences and therefore the discussion and results provided in this paper could be useful for future designs and fatigue analyses of tidal turbines.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
dc.subjectÀrees temàtiques de la UPC::Energies
dc.subject.lcshTidal power
dc.subject.lcshMaterials -- Fatigue
dc.subject.lcshSteam turbines
dc.subject.otherTidal energy
dc.subject.otherDynamic stress
dc.subject.otherFatigue
dc.subject.otherBulb turbine
dc.titleOperating conditions leading to crack propagation in turbine blades of tidal barrages. Influence of head and operating mode
dc.typeArticle
dc.subject.lemacEnergia maremotriu
dc.subject.lemacMaterials -- Fatiga
dc.subject.lemacTurbines de vapor
dc.contributor.groupUniversitat Politècnica de Catalunya. FLUIDS - Enginyeria de Fluids
dc.identifier.doi10.1016/j.engfailanal.2019.104254
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S1350630719303425?via%3Dihub#!
dc.rights.accessOpen Access
local.identifier.drac29979442
dc.description.versionPostprint (author's final draft)
local.citation.authorLuo, Y.; Presas, A.; Wang, Z.; Xiao, Y.
local.citation.publicationNameEngineering failure analysis
local.citation.volume108
local.citation.number104254
local.citation.startingPage104254:1
local.citation.endingPage104254:13


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record