Convex quadrangulations of bichromatic point sets
View/Open
Cita com:
hdl:2117/334319
Document typeArticle
Defense date2020-06-05
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectCONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
GRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES (MINECO-MTM2015-63791-R)
GRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES (MINECO-MTM2015-63791-R)
Abstract
We consider quadrangulations of red and blue points in the plane where each face is convex and no edge connects two points of the same color. In particular, we show that the following problem is NP-hard: Given a finite set S of points with each point either red or blue, does there exist a convex quadrangulation of S in such a way that the predefined colors give a valid vertex 2-coloring of the quadrangulation? We consider this as a step towards solving the corresponding long-standing open problem on monochromatic point sets.
Description
Electronic version of an article published as International journal of computational geometry and applications, 5 May 2020, vol. 29, núm. 4, p. 289-299. Article DOI 10.1142/S0218195919500109 © 2020 copyright World Scientific Publishing Company. Journal URL: https://www.worldscientific.com/doi/abs/10.1142/S0218195919500109
CitationPilz, A.; Seara, C. Convex quadrangulations of bichromatic point sets. "International journal of computational geometry and applications", 5 May 2020, vol. 29, núm. 4, p. 289-299.
ISSN0218-1959
Publisher versionhttps://www.worldscientific.com/doi/abs/10.1142/S0218195919500109
Files | Description | Size | Format | View |
---|---|---|---|---|
quadrangulations-1.pdf | 330,4Kb | View/Open |