Show simple item record

dc.contributorVan Wunnik, Lucas Philippe
dc.contributorHarder Clemmensen, Line Katrine
dc.contributorSøgaard Larsen, Jacob
dc.contributor.authorMirabet Manjón, David
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Organització d'Empreses
dc.date.accessioned2020-12-10T11:35:22Z
dc.date.issued2020-09-17
dc.identifier.urihttp://hdl.handle.net/2117/334207
dc.description.abstractThis Master’s Thesis comprises the formulation, inference and post-hoc analysis of ordinal regression models to describe elbow pain reporting from people with a lateral epicondylitis condition. Furthermore, an experiment is designed to collect pain reports and electromyography signals from 38 individuals in a strictly controlled setup. Explanatory variables are extracted from the forearm muscles electrical activity and converted into input features for the regression model. PRECURE ApS provided a data set with pain reports as well as an IoT device commercially called MLI Elbow to record muscle activity of target individuals. A cumulative link mixed model with scale effects is proposed for the PRECURE’s pain reports data set while a cumulative link model with scale effects is proposed for the pain reports gathered in the experiment. A signal processing pipeline and a clustering algorithm are designed for an exploratory analysis of the electromyography signals collected in the experiment. The final models provides interesting and valuable findings about the understanding of factors affecting pain reports. Moreover, the study of elbow pain, being this the physiological and psychological manifestation of lateral epicondylitis, disclose patterns in the risk factors involved in developing this condition.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica
dc.subject.lcshMuscles -- Wounds and injuries -- Computer simulation
dc.titleCumulative link mixed models and clustering of EMG signals for pain assessment in lateral epicondylitis
dc.typeMaster thesis
dc.subject.lemacMúsculs -- Ferides i lesions -- Simulació per ordinador
dc.identifier.slugETSEIB-240.148682
dc.rights.accessRestricted access - author's decision
dc.date.lift10000-01-01
dc.date.updated2020-09-17T04:36:52Z
dc.audience.educationlevelMàster
dc.audience.mediatorEscola Tècnica Superior d'Enginyeria Industrial de Barcelona
dc.audience.degreeMÀSTER UNIVERSITARI EN ENGINYERIA INDUSTRIAL (Pla 2014)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder