3D imaging techniques for characterising microcracks in cement-based materials
View/Open
3D imaging techniques for characterising microcracks in cement-based materials_4DRAC.pdf (6,184Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/333158
Document typeArticle
Defense date2021-02
Rights accessRestricted access - publisher's policy
(embargoed until 2022-11-18)
Abstract
Concrete inherently contains pores and microcracks that can adversely impact its mechanical properties and long-term durability. However, characterising microcracks is difficult due to their complex, multiscale and three-dimensional (3D) nature. This paper presents an evaluation of 3D imaging techniques for characterising microcracks induced by different mechanisms. Seven cement pastes, mortars and concretes subjected to drying shrinkage, autogenous shrinkage and freeze-thaw cycles were investigated using focused ion beam nanotomography (FIB-nt), broad ion beam serial section tomography (BIB-SST), laser scanning confocal microscopy (LSCM) combined with serial sectioning and X-ray microtomography (µCT). The study shows that the characteristics of microcracks vary significantly depending on exposure conditions. Yet there is no single technique that can capture the entire size range of microcracks from sub to tens of µm within a sufficiently representative sampling volume. The achievable image volume and resolution, and the advantages and disadvantages of each technique are compared and discussed.
CitationMac, M. [et al.]. 3D imaging techniques for characterising microcracks in cement-based materials. "Cement and concrete research", Febrer 2021, vol. 140, p. 106309:1-106309:14.
ISSN0008-8846
Files | Description | Size | Format | View |
---|---|---|---|---|
3D imaging tech ... -based materials_4DRAC.pdf![]() | 6,184Mb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 Generic