An e-Learning toolbox based on rule-based fuzzy approaches
View/Open
Cita com:
hdl:2117/333099
Document typeArticle
Defense date2020-09-28
PublisherMultidisciplinary Digital Publishing Institute
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution 4.0 International
Abstract
In this paper, an e-Learning toolbox based on a set of fuzzy logic data mining techniques is presented. The toolbox is mainly based on the fuzzy inductive reasoning (FIR) methodology and two of its key extensions: (i) the linguistic rules extraction algorithm (LR-FIR), which extracts comprehensible and consistent sets of rules describing students’ learning behavior, and (ii) the causal relevance approach (CR-FIR), which allows to reduce uncertainty during a student’s performance prediction stage, and provides a relative weighting of the features involved in the evaluation process. In addition, the presented toolbox enables, in an incremental way, detecting and grouping students with respect to their learning behavior, with the main goal to timely detect failing students, and properly provide them with suitable and actionable feedback. The proposed toolbox has been applied to two different datasets gathered from two courses at the Latin American Institute for Educational Communication virtual campus. The introductory and didactic planning courses were analyzed using the proposed toolbox. The results obtained by the functionalities offered by the platform allow teachers to make decisions and carry out improvement actions in the current course, i.e., to monitor specific student clusters, to analyze possible changes in the different evaluable activities, or to reduce (to some extent) teacher workload.
CitationNebot, A.; Múgica, F.; Castro, F. An e-Learning toolbox based on rule-based fuzzy approaches. "Applied sciences", 28 Setembre 2020, vol. 10, núm. 19, p. 1-21.
ISSN2076-3417
Publisher versionhttps://www.mdpi.com/2076-3417/10/19/6804
Files | Description | Size | Format | View |
---|---|---|---|---|
applsci-10-06804-v2.pdf | 950,5Kb | View/Open |