Damage diagnosis for offshore wind turbine foundations based on the fractal dimension
dc.contributor.author | Hoxha, Ervin |
dc.contributor.author | Vidal Seguí, Yolanda |
dc.contributor.author | Pozo Montero, Francesc |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2020-11-20T13:44:12Z |
dc.date.available | 2020-11-20T13:44:12Z |
dc.date.issued | 2020-10-05 |
dc.identifier.citation | Hoxha, E.; Vidal, Y.; Pozo, F. Damage diagnosis for offshore wind turbine foundations based on the fractal dimension. "Applied sciences", 5 Octubre 2020, vol. 10, núm. 19, p. 6972:1-6972:24. |
dc.identifier.issn | 1454-5101 |
dc.identifier.uri | http://hdl.handle.net/2117/332722 |
dc.description.abstract | Cost-competitiveness of offshore wind depends heavily in its capacity to switch preventive maintenance to condition-based maintenance. That is, to monitor the actual condition of the wind turbine (WT) to decide when and which maintenance needs to be done. In particular, structural health monitoring (SHM) to monitor the foundation (support structure) condition is of utmost importance in offshore-fixed wind turbines. In this work a SHM strategy is presented to monitor online and during service a WT offshore jacket-type foundation. Standard SHM techniques, as guided waves with a known input excitation, cannot be used in a straightforward way in this particular application where unknown external perturbations as wind and waves are always present. To face this challenge, a vibration-response-only SHM strategy is proposed via machine learning methods. In this sense, the fractal dimension is proposed as a suitable feature to identify and classify different types of damage. The proposed proof-of-concept technique is validated in an experimental laboratory down-scaled jacket WT foundation undergoing different types of damage. |
dc.language.iso | eng |
dc.rights | Attribution 4.0 International (CC BY 4.0) |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències |
dc.subject.lcsh | Offshore wind power plants |
dc.subject.lcsh | Structural health monitoring |
dc.subject.other | Fractal dimension |
dc.subject.other | Structural health monitoring |
dc.subject.other | Offshore wind turbine |
dc.subject.other | kNN |
dc.subject.other | Support vector machines |
dc.title | Damage diagnosis for offshore wind turbine foundations based on the fractal dimension |
dc.type | Article |
dc.subject.lemac | Parcs eòlics marins |
dc.subject.lemac | Fractals |
dc.subject.lemac | Monitorització de salut estructural |
dc.contributor.group | Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions |
dc.identifier.doi | 10.3390/app10196972 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://creativecommons.org/licenses/by/4.0/ |
dc.rights.access | Open Access |
local.identifier.drac | 29509435 |
dc.description.version | Postprint (published version) |
local.citation.author | Hoxha, E.; Vidal, Y.; Pozo, F. |
local.citation.publicationName | Applied sciences |
local.citation.volume | 10 |
local.citation.number | 19 |
local.citation.startingPage | 6972:1 |
local.citation.endingPage | 6972:24 |
Files in this item
This item appears in the following Collection(s)
-
Articles de revista [47]
-
Articles de revista [2.609]
-
Articles de revista [153]
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain