UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
Chaotic linear equation-system solvers for unsteady CFD

Cita com:
hdl:2117/332561
Document typeConference report
Defense date2015
PublisherCIMNE
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
A Chaotic Iterative Method, which is a form of totally asynchronous linear
equation-system solver, is implemented within an open-source framework. The solver is similar
to simple Jacobi or Gauss-Seidel methods, but is highly optimized for massively- parallel
computations. Processes or threads are free to run computations regardless of the current state of
other processes, iterating individual equations with no limitations on the state of the variables
which they use. Each individual iteration may pull variables from the same iteration, the previous
iteration, or indeed any iteration. This effectively removes all synchronization from the Jacobi
or Gauss-Seidel algorithm, allowing computations to run efficiently with high concurrency.
The trade-off is that the numerical convergence rate of these simple algorithms is slower compared
to the classical Krylov Subspace methods, which are popular today. However, unique features of the
computational fluid dynamics algorithm work in favour of Chaotic methods, allowing the fluid
dynamics field to exploit these algorithms when other’s cannot. The results of the Chaotic
solver are presented, verifying the numerical results and benchmarking performance against
the Generalized Minimal Residual (GMRES) solver and a Pipelined GMRES solver. The
results show that, under certain circumstances, Chaotic methods could be used as a
standalone solver due to their superior scalability. The potential to use Chaotic methods as
a pre-conditioner or hybrid solver is also revealed.
CitationHawkes, J.N. [et al.]. Chaotic linear equation-system solvers for unsteady CFD. A: MARINE VI. "MARINE VI : proceedings of the VI International Conference on Computational Methods in Marine Engineering". CIMNE, 2015, p. 931-942. ISBN 978-84-943928-6-3.
ISBN978-84-943928-6-3
Files | Description | Size | Format | View |
---|---|---|---|---|
Marine-2015-75_CHAOTIC LINEAR EQUATION-SYSTEM.pdf | 972,9Kb | View/Open |