Synthesis of magnetic CMC bionanocomposite containing a novel biodegradable nanoporous polyamide selectively synthesized in ionic liquid as green media: Investigation on Nd+3, Tb+3, and Dy+3 rare earth elements adsorption
View/Open
2020 03 31 J Mol liquids Proofs.pdf (8,494Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/332396
Document typeArticle
Defense date2020-06-15
Rights accessRestricted access - publisher's policy
(embargoed until 2022-06-15)
Abstract
In this research study, the carboxymethyl chitosan/poly(pyrimidine-thiophene-amide)/Ni0.2Zn0.2Fe2.6O4 (CMC/P(PTA)/Ni0.2Zn0.2Fe2.6O4) was prepared as a novel magnetic bionanocomposite adsorbent. FE-SEM, EDX, NMR, XRD, FT-IR, and VSM techniques were applied for the analyses of the products. The adsorption behavior of the prepared bionanocomposite was investigated towards Nd+3, Tb+3, and Dy+3 as adsorbates. The adsorption process was evaluated considering the influence of independent parameters including pH of the solution, contact time, adsorbent dosage, initial metal ions concentration, and ionic strength. The adsorption efficiency values of 98.15, 97.6, and 99.42% were respectively obtained for Nd+3, Tb+3, and Dy+3 at optimum conditions of pH = 5.5, 30 mg/L of the ions, adsorbent dosage of 0.06 g, and contact time of 90 min. The data of the adsorption equilibrium of the ions were fitted well by Freundlich model. Kinetic studies showed that Nd+3, Tb+3, and Dy+3 adsorption followed both pseudo-second-order (PSO) and intra-particle diffusion (IPD) kinetic models. The values of ¿H° indicated that the ions adsorption process onto the bionanocomposite was endothermic, and the ¿G° values revealed that it was spontaneous at higher temperature. The CMC/P(PTA)/Ni0.2Zn0.2Fe2.6O4 could be regenerated by 0.2 M HNO3 and its separation was viable utilizing a magnetic field with the saturation magnetization value of 14.88 emu/g.
CitationJavadian, H. [et al.]. Synthesis of magnetic CMC bionanocomposite containing a novel biodegradable nanoporous polyamide selectively synthesized in ionic liquid as green media: Investigation on Nd+3, Tb+3, and Dy+3 rare earth elements adsorption. "Journal of molecular liquids", 15 Juny 2020, vol. 308, p. 113017/1-113017/15.
ISSN0167-7322
Files | Description | Size | Format | View |
---|---|---|---|---|
2020 03 31 J Mol liquids Proofs.pdf![]() | 8,494Mb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain