Joint modeling of survival and longitudinal ordered data using a semiparametric approach

View/Open
Cita com:
hdl:2117/331851
Document typeArticle
Defense date2016-07-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Medical research frequently focuses on the relationship between quality of life (QoL) and survival time of subjects. QoL may be one of the most important factors that could be used to predict survival, making it worth identifying factors that jointly affect survival and QoL. We propose a semiparametric joint model that consists of item response and survival components, where these two components are linked through latent variables. Several popular ordinal models are considered and compared in the item response component, while the Cox proportional hazards model is used in the survival component. We estimate the baseline hazard function and model parameters simultaneously, through a profile likelihood approach. We illustrate the method using an example from a clinical study.
CitationPreedalikit, K. [et al.]. Joint modeling of survival and longitudinal ordered data using a semiparametric approach. "Australian and New Zealand journal of statistics", 1 Juliol 2016, vol. 58, núm. 2, p. 153-172.
ISSN1369-1473
Publisher versionhttps://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.12153
Files | Description | Size | Format | View |
---|---|---|---|---|
Predaalikitetal201601.pdf | 511,0Kb | View/Open |