Adaptive self-recurrent wavelet neural network and sliding mode controller/observer for a slider crank mechanism
View/Open
Article (244,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/331398
Document typeArticle
Defense date2020-10-03
PublisherInderScience Publishers
Rights accessRestricted access - publisher's policy
(embargoed until 2021-11-01)
Abstract
In this paper, a novel control strategy based on an adaptive Self-Recurrent Wavelet Neural Network (SRWNN) and a sliding mode controller/observer for a slider crank mechanism is proposed. The aim is to reduce the tracking error of the linear displacement of this mechanism while following a specified trajectory. The controller design consists of two parts. The first one is a sliding mode control strategy and the second part is an SRWNN controller. This controller is trained offline first, and then the SRWNN weights are updated online by the adaptive control law. Apart from the hybrid control strategy proposed in this paper, a velocity observer is implemented to replace the use of velocity sensors. The outcomes obtained in the numerical experiment section prove that the smallest tracking error is obtained for the linear and angular displacements in comparison with other strategies found in literature due to the uncertainty and disturbance rejection properties of the sliding mode and the self-recurrent wavelet neural network controllers.
CitationAzar, A.T. [et al.]. Adaptive self-recurrent wavelet neural network and sliding mode controller/observer for a slider crank mechanism. "International journal of computer applications in technology", 3 Octubre 2020, vol. 63, núm. 4, p. 273-285.
ISSN1741-5047
Publisher versionhttps://www.inderscience.com/info/inarticle.php?artid=110404
Files | Description | Size | Format | View |
---|---|---|---|---|
IJCAT_Azar-min.pdf![]() | Article | 244,9Kb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder