Show simple item record

dc.contributorFossas Colet, Enric
dc.contributorRoqueiro, Nestor
dc.contributor.authorFisco Compte, Pau
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.description.abstractIn this manuscript it is exposed a method to approximate functions using artificial neural networks based on wavelets (wavenet). The focus is on finding the best configuration for the wavenet, from various possible settings in relation to the mathematical development of the network, to be able to approximate a FitzHugh-Nagumo model to later be used to predict any scenario with a single initial condition for the model. It is shown that after training the artificial network, it is able to approximate the non-linear behaviour of the FitzHugh-Nagumo model with high accuracy, providing a neuron model which can be then applied to models for real neurons with similar inputs to those from the wavenet. Finally, it is proved that additional linear terms applied to the outputs improve significantly the error of the approximation to those wavenets with non-linear type scale functions, thus it is been possible to obtain better results without the need to increase the resolution level and thereby reducing the simulation time.
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut
dc.subject.lcshCognitive neuroscience
dc.titleA Prediction Model for Neuronal Synaptic Inputs
dc.typeBachelor thesis
dc.subject.lemacNeurociencia cognitiva
dc.rights.accessOpen Access
dc.audience.mediatorEscola Tècnica Superior d'Enginyeria Industrial de Barcelona

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder