Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

8.911 Lectures/texts in conference proceedings
You are here:
View Item 
  •   DSpace Home
  • Congressos
  • BSC International Doctoral Symposium
  • 7th BSC Severo Ochoa Doctoral Symposium, Spring 2020
  • View Item
  •   DSpace Home
  • Congressos
  • BSC International Doctoral Symposium
  • 7th BSC Severo Ochoa Doctoral Symposium, Spring 2020
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Specific-purpose globalizations for Newton’s method: anisotropic optimization of curved meshes

Thumbnail
View/Open
BSC_SODS-20-09_Specific-purpose globalizations.pdf (201,3Kb)
license_rdf.rdf (1,203Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/330998

Show full item record
Aparicio Estrems, GuillermoMés informacióMés informació
Gargallo Peiró, AbelMés informacióMés informacióMés informació
Roca Navarro, Francisco Javier
Document typeConference report
Defense date2020-05
PublisherBarcelona Supercomputing Center
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We derive an optimization method to adapt straight-edged and curved piece-wise polynomial meshes to the stretching and alignment of a target metric. Two globalization strategies for the optimization method are proposed: backtracking line search and restricted trust region. To compare both globalization approaches, we derive a specific-purpose implementation of Newton’s method for each globalization. To propose these two new implementations, we present different emulation methods to interchange between both approaches their nonshared globalization features. Once the number of non-linear iterations is comparable, we have been able to improve the inexact Newton implementation, with both globalization methods, to reduce one order of magnitude the total number of sparse matrix-vector products. I.
CitationAparicio Estrems, G.; Gargallo-Peiró, A.; Roca, X. Specific-purpose globalizations for Newton's method: anisotropic optimization of curved meshes. A: . Barcelona Supercomputing Center, 2020, p. 29-30. 
URIhttp://hdl.handle.net/2117/330998
Collections
  • BSC International Doctoral Symposium - 7th BSC Severo Ochoa Doctoral Symposium, Spring 2020 [25]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
BSC_SODS-20-09_Specific-purpose globalizations.pdf201,3KbPDFView/Open
license_rdf.rdf1,203Kbapplication/rdf+xml; charset=utf-8View/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina