Show simple item record

dc.contributor.authorNicolás, M. de
dc.contributor.authorBesharatloo, Hossein
dc.contributor.authorAlvaredo Olmos, Paula
dc.contributor.authorRoa Rovira, Joan Josep
dc.contributor.authorLlanes Pitarch, Luis Miguel
dc.contributor.authorGordo Odériz, Elena
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
dc.date.accessioned2020-10-27T07:59:24Z
dc.date.issued2020-02-01
dc.identifier.citationNicolás, M. [et al.]. Design of alternative binders for hard materials. "International journal of refractory metals and hard materials", 1 Febrer 2020, vol. 87, p. 105089/1-105089/13.
dc.identifier.issn0263-4368
dc.identifier.urihttp://hdl.handle.net/2117/330840
dc.description.abstractIn the last years, a special interest has emerged towards the total or partial substitution of traditional cemented carbides composing elements. In this study, a systematic methodology is presented and used to design iron-based binders for WC and Ti(C,N) ceramic phases. First, metal alloy phase diagrams were simulated by means of Thermo-Calc® software, combining several alloying elements (Ni, Al, Cr, Mo and C) to fulfil the following criteria: provide high corrosion resistance, least number of phases present at room temperature and solidus-liquidus temperatures below 1500¿°C. Two final compositions were chosen: Fe15Ni10Cr and Fe15Cr10Al. Next step was to validate the critical temperatures by means of differential thermal analysis tests and, finally, high-temperature wetting experiments were conducted to measure the contact angle between molten metal and ceramic phases. Resultant metal-ceramic region was studied by means of field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and nanoindentation techniques. As a proof of concept, samples with 80 vol% of Ti(C,N) and WC ceramic phases were prepared for a basic characterization. Both ceramic reinforcements were compared, and the presented methodology could satisfactorily be validated as a design procedure of alternative binders for hard materials.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshCarbides
dc.subject.otherCermetsTi(C
dc.subject.otherN)
dc.subject.otherAlternative binders
dc.subject.otherThermodynamic simulation
dc.subject.otherWettability
dc.titleDesign of alternative binders for hard materials
dc.typeArticle
dc.subject.lemacCarburs
dc.contributor.groupUniversitat Politècnica de Catalunya. CIEFMA - Centre d'Integritat Estructural, Micromecànica i Fiabilitat dels Materials
dc.identifier.doi10.1016/j.ijrmhm.2019.105089
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S0263436819304597
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac26878710
dc.description.versionPostprint (author's final draft)
dc.date.lift2022-02
local.citation.authorNicolás, M.; Besharatloo, H.; Alvaredo, P.; Roa, J.J.; Llanes, L.; Gordo, E.
local.citation.publicationNameInternational journal of refractory metals and hard materials
local.citation.volume87
local.citation.startingPage105089/1
local.citation.endingPage105089/13


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain