Adaptive learning-based resource management strategy in fog-to-cloud
View/Open
Cita com:
hdl:2117/330737
Chair / Department / Institute
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Document typeDoctoral thesis
Data de defensa2020-10-20
PublisherUniversitat Politècnica de Catalunya
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-ShareAlike 4.0 International
Abstract
Technology in the twenty-first century is rapidly developing and driving us into a new smart computing world, and emerging lots
of new computing architectures. Fog-to-Cloud (F2C) is among one of them, which emerges to ensure the commitment for
bringing the higher computing facilities near to the edge of the network and also help the large-scale computing system to be
more intelligent. As the F2C is in its infantile state, therefore one of the biggest challenges for this computing paradigm is to
efficiently manage the computing resources. Mainly, to address this challenge, in this work, we have given our sole interest for
designing the initial architectural framework to build a proper, adaptive and efficient resource management mechanism in F2C.
F2C has been proposed as a combined, coordinated and hierarchical computing platform, where a vast number of
heterogeneous computing devices are participating. Notably, their versatility creates a massive challenge for effectively handling
them. Even following any large-scale smart computing system, it can easily recognize that various kind of services is served for
different purposes. Significantly, every service corresponds with the various tasks, which have different resource requirements.
So, knowing the characteristics of participating devices and system offered services is giving advantages to build effective and
resource management mechanism in F2C-enabled system. Considering these facts, initially, we have given our intense focus for
identifying and defining the taxonomic model for all the participating devices and system involved services-tasks.
In any F2C-enabled system consists of a large number of small Internet-of-Things (IoTs) and generating a continuous and
colossal amount of sensing-data by capturing various environmental events. Notably, this sensing-data is one of the key
ingredients for various smart services which have been offered by the F2C-enabled system. Besides that, resource statistical
information is also playing a crucial role, for efficiently providing the services among the system consumers. Continuous
monitoring of participating devices generates a massive amount of resource statistical information in the F2C-enabled system.
Notably, having this information, it becomes much easier to know the device's availability and suitability for executing some tasks
to offer some services. Therefore, ensuring better service facilities for any latency-sensitive services, it is essential to securely
distribute the sensing-data and resource statistical information over the network. Considering these matters, we also proposed
and designed a secure and distributed database framework for effectively and securely distribute the data over the network.
To build an advanced and smarter system is necessarily required an effective mechanism for the utilization of system resources.
Typically, the utilization and resource handling process mainly depend on the resource selection and allocation mechanism. The
prediction of resources (e.g., RAM, CPU, Disk, etc.) usage and performance (i.e., in terms of task execution time) helps the
selection and allocation process. Thus, adopting the machine learning (ML) techniques is much more useful for designing an
advanced and sophisticated resource allocation mechanism in the F2C-enabled system. Adopting and performing the ML
techniques in F2C-enabled system is a challenging task. Especially, the overall diversification and many other issues pose a
massive challenge for successfully performing the ML techniques in any F2C-enabled system. Therefore, we have proposed and
designed two different possible architectural schemas for performing the ML techniques in the F2C-enabled system to achieve
an adaptive, advance and sophisticated resource management mechanism in the F2C-enabled system. Our proposals are the
initial footmarks for designing the overall architectural framework for resource management mechanism in F2C-enabled system. La tecnologia del segle XXI avança ràpidament i ens condueix cap a un nou món intel·ligent, creant nous models d'arquitectures informàtiques. Fog-to-Cloud (F2C) és un d’ells, i sorgeix per garantir el compromís d’acostar les instal·lacions informàtiques a prop de la xarxa i també ajudar el sistema informàtic a gran escala a ser més intel·ligent. Com que el F2C es troba en un estat preliminar, un dels majors reptes d’aquest paradigma tecnològic és gestionar eficientment els recursos informàtics. Per fer front a aquest repte, en aquest treball hem centrat el nostre interès en dissenyar un marc arquitectònic per construir un mecanisme de gestió de recursos adequat, adaptatiu i eficient a F2C.F2C ha estat concebut com una plataforma informàtica combinada, coordinada i jeràrquica, on participen un gran nombre de dispositius heterogenis. La seva versatilitat planteja un gran repte per gestionar-los de manera eficaç. Els serveis que s'hi executen consten de diverses tasques, que tenen requisits de recursos diferents. Per tant, conèixer les característiques dels dispositius participants i dels serveis que ofereix el sistema és un requisit per dissenyar mecanismes eficaços i de gestió de recursos en un sistema habilitat per F2C. Tenint en compte aquests fets, inicialment ens hem centrat en identificar i definir el model taxonòmic per a tots els dispositius i sistemes implicats en l'execució de tasques de serveis. Qualsevol sistema habilitat per F2C inclou en un gran nombre de dispositius petits i connectats (conegut com a Internet of Things, o IoT) que generen una quantitat contínua i colossal de dades de detecció capturant diversos events ambientals. Aquestes dades són un dels ingredients clau per a diversos serveis intel·ligents que ofereix F2C. A més, el seguiment continu dels dispositius participants genera igualment una gran quantitat d'informació estadística. En particular, en tenir aquesta informació, es fa molt més fàcil conèixer la disponibilitat i la idoneïtat dels dispositius per executar algunes tasques i oferir alguns serveis. Per tant, per garantir millors serveis sensibles a la latència, és essencial distribuir de manera equilibrada i segura la informació estadística per la xarxa. Tenint en compte aquests assumptes, també hem proposat i dissenyat un entorn de base de dades segura i distribuïda per gestionar de manera eficaç i segura les dades a la xarxa. Per construir un sistema avançat i intel·ligent es necessita un mecanisme eficaç per a la gestió de l'ús dels recursos del sistema. Normalment, el procés d’utilització i manipulació de recursos depèn principalment del mecanisme de selecció i assignació de recursos. La predicció de l’ús i el rendiment de recursos (per exemple, RAM, CPU, disc, etc.) en termes de temps d’execució de tasques ajuda al procés de selecció i assignació. Adoptar les tècniques d’aprenentatge automàtic (conegut com a Machine Learning, o ML) és molt útil per dissenyar un mecanisme d’assignació de recursos avançat i sofisticat en el sistema habilitat per F2C. L’adopció i la realització de tècniques de ML en un sistema F2C és una tasca complexa. Especialment, la diversificació general i molts altres problemes plantegen un gran repte per realitzar amb èxit les tècniques de ML. Per tant, en aquesta recerca hem proposat i dissenyat dos possibles esquemes arquitectònics diferents per realitzar tècniques de ML en el sistema habilitat per F2C per aconseguir un mecanisme de gestió de recursos adaptatiu, avançat i sofisticat en un sistema F2C. Les nostres propostes són els primers passos per dissenyar un marc arquitectònic general per al mecanisme de gestió de recursos en un sistema habilitat per F2C.
CitationSengupta, S. Adaptive learning-based resource management strategy in fog-to-cloud. Tesi doctoral, UPC, Departament d'Arquitectura de Computadors, 2020. DOI 10.5821/dissertation-2117-330737 . Available at: <http://hdl.handle.net/2117/330737>
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
TSS1de1.pdf | 2,462Mb | View/Open |