Show simple item record

dc.contributor.authorViolán Fors, Concepción
dc.contributor.authorFernández Bertolín, Sergio
dc.contributor.authorGuisado Clavero, Marina
dc.contributor.authorFoguet Boreu, Quintí
dc.contributor.authorValderas, José Maria
dc.contributor.authorVidal Manzano, José
dc.contributor.authorRoso Llorach, Albert
dc.contributor.authorCabrera-Bean, Margarita
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2020-10-23T13:46:30Z
dc.date.available2020-10-23T13:46:30Z
dc.date.issued2020-12
dc.identifier.citationViolán, C. [et al.]. Five-year trajectories of multimorbidity patterns in an elderly Mediterranean population using Hidden Markov Models. "Scientific reports", Desembre 2020, vol. 10, p. 16879:1-16879:11.
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/2117/330722
dc.description.abstractThis study aimed to analyse the trajectories and mortality of multimorbidity patterns in patients aged 65 to 99 years in Catalonia (Spain). Five year (2012–2016) data of 916,619 participants from a primary care, population-based electronic health record database (Information System for Research in Primary Care, SIDIAP) were included in this retrospective cohort study. Individual longitudinal trajectories were modelled with a Hidden Markov Model across multimorbidity patterns. We computed the mortality hazard using Cox regression models to estimate survival in multimorbidity patterns. Ten multimorbidity patterns were originally identified and two more states (death and drop-outs) were subsequently added. At baseline, the most frequent cluster was the Non-Specific Pattern (42%), and the least frequent the Multisystem Pattern (1.6%). Most participants stayed in the same cluster over the 5 year follow-up period, from 92.1% in the Nervous, Musculoskeletal pattern to 59.2% in the Cardio-Circulatory and Renal pattern. The highest mortality rates were observed for patterns that included cardio-circulatory diseases: Cardio-Circulatory and Renal (37.1%); Nervous, Digestive and Circulatory (31.8%); and Cardio-Circulatory, Mental, Respiratory and Genitourinary (28.8%). This study demonstrates the feasibility of characterizing multimorbidity patterns along time. Multimorbidity trajectories were generally stable, although changes in specific multimorbidity patterns were observed. The Hidden Markov Model is useful for modelling transitions across multimorbidity patterns and mortality risk. Our findings suggest that health interventions targeting specific multimorbidity patterns may reduce mortality in patients with multimorbidity.
dc.description.sponsorshipThis work was supported by a research grant from the Carlos III Institute of Health, Ministry of Economy and Competitiveness (Spain), awarded for the 2016 call under the Health Strategy Action 2013–2016, within the National Research Program oriented to Societal Challenges, within the Technical, Scientifc and Innovation Research National Plan 2013–2016 ‘[grant number PI16/00639]’, co-funded with European Union ERDF funds (European Regional Development Fund) and the Department of Health of the Catalan Government, in the call corresponding to 2017 for the granting of subsidies from the Strategic Plan for Research in Health (Pla Estratègic de Recerca i Innovació en Salut, PERIS) 2016–2020, modality research oriented to Primary care ‘[grant number SLT002/16/00058]’ and by the Catalan Government ‘[Grant Number AGAUR 2017 SGR 578].
dc.language.isoeng
dc.publisherNature
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut::Medicina::Medicina comunitària i salut pública
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica
dc.subject.lcshPublic health
dc.subject.lcshEconomics -- Statistical methods
dc.titleFive-year trajectories of multimorbidity patterns in an elderly Mediterranean population using Hidden Markov Models
dc.typeArticle
dc.subject.lemacSalut pública
dc.subject.lemacEconomia -- Mètodes estadístics
dc.contributor.groupUniversitat Politècnica de Catalunya. SPCOM - Grup de Recerca de Processament del Senyal i Comunicacions
dc.identifier.doi10.1038/s41598-020-73231-9
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-020-73231-9
dc.rights.accessOpen Access
local.identifier.drac29607082
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AGAUR/PRI2017-2019/2017 SGR 578
local.citation.authorViolán, C.; Fernández, S.; Guisado, M.; Foguet Boreu, Q.; Valderas, J.; Vidal, J.; Roso Llorach, Albert; Cabrera-Bean, Margarita
local.citation.publicationNameScientific reports
local.citation.volume10
local.citation.startingPage16879:1
local.citation.endingPage16879:11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record